Skip to main content

Photon-Axion Conversion in Intergalactic Magnetic Fields and Cosmological Consequences

  • Chapter
Axions

Part of the book series: Lecture Notes in Physics ((LNP,volume 741))

Abstract

Photon-axion conversion induced by intergalactic magnetic fields causes an apparent dimming of distant sources, notably of cosmic distance indicators such as supernovae of type Ia (SNe Ia). We review the impact of this mechanism on the luminosity-redshift relation of SNe Ia, on the dispersion of quasar spectra, and on the spectrum of the cosmic microwave background. The original idea of explaining the apparent dimming of distant SNe Ia without cosmic acceleration is strongly constrained by these arguments. However, the cosmic equation of state extracted from the SN Ia luminosity-redshift relation remains sensitive to this mechanism. For example, it can mimic phantom energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sikivie, P.: Experimental tests of the ‘invisible’ axion. Phys. Rev. Lett. 51, 1415 (1983), (E) ibid. 52, 695 (1984)

    Article  ADS  Google Scholar 

  2. Raffelt, G., Stodolsky, L.: Mixing of the photon with low mass particles. Phys. Rev. D 37, 1237 (1988)

    Article  ADS  Google Scholar 

  3. Bradley, R., et al.: Microwave cavity searches for dark-matter axions. Rev. Mod. Phys. 75, 777 (2003)

    Article  ADS  Google Scholar 

  4. van Bibber, K., McIntyre, P.M., Morris, D.E., Raffelt, G.G.: A practical laboratory detector for solar axions. Phys. Rev. D 39, 2089 (1989)

    Article  ADS  Google Scholar 

  5. Moriyama, S., Minowa, M., Namba, T., Inoue, Y., Takasu, Y., Yamamoto, A.: Direct search for solar axions by using strong magnetic field and X-ray detectors. Phys. Lett. B 434, 147 (1998) [hep-ex/9805026]

    Article  ADS  Google Scholar 

  6. Inoue, Y., Namba, T., Moriyama, S., Minowa, M., Takasu, Y., Horiuchi, T., Yamamoto, A.: Search for sub-electronvolt solar axions using coherent conversion of axions into photons in magnetic field and gas helium. Phys. Lett. B 536, 18 (2002) [astro-ph/0204388]

    Article  ADS  Google Scholar 

  7. Zioutas, K., et al. (CAST Collaboration): First results from the CERN axion solar telescope (CAST). Phys. Rev. Lett. 94, 121301 (2005) [hep-ex/0411033]

    Article  ADS  Google Scholar 

  8. Raffelt, G.G.: Stars as Laboratories for Fundamental Physics. University of Chicago Press, Chicago (1996)

    Google Scholar 

  9. Raffelt, G.G.: Particle physics from stars. Annu. Rev. Nucl. Part. Sci. 49, 163 (1999) [hep-ph/9903472]

    Article  ADS  Google Scholar 

  10. Harari, D., Sikivie, P.: Effects of a Nambu-Goldstone boson on the polarization of radio galaxies and the cosmic microwave background. Phys. Lett. B 289, 67 (1992)

    Article  ADS  Google Scholar 

  11. Hutsemekers, D., Cabanac, R., Lamy, H., Sluse, D.: Mapping extreme-scale alignments of quasar polarization vectors. Astron. Astrophys. 441, 915 (2005) [astro-ph/0507274]

    Article  ADS  Google Scholar 

  12. Krasnikov, S.V.: New astrophysical constraints on the light pseudoscalar photon coupling. Phys. Rev. Lett. 76, 2633 (1996)

    Article  ADS  Google Scholar 

  13. Gorbunov, D.S., Raffelt, G.G., Semikoz, D.V.: Axion-like particles as ultrahigh-energy cosmic rays?. Phys. Rev. D 64, 096005 (2001) [hep-ph/0103175]

    Article  ADS  Google Scholar 

  14. Csáki, C., Kaloper, N., Peloso, M., Terning, J.: Super-GZK photons from photon axion mixing. JCAP 0305, 005 (2003) [hep-ph/0302030]

    Google Scholar 

  15. Csáki, C., Kaloper, N., Terning, J.: (CKT I), Dimming supernovae without cosmic acceleration. Phys. Rev. Lett. 88, 161302 (2002) [hep-ph/0111311]

    Article  ADS  Google Scholar 

  16. Riess, A.G., et al. (Supernova Search Team Collaboration): Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998) [astro-ph/9805201]

    Article  ADS  Google Scholar 

  17. Perlmutter, S., et al. (Supernova Cosmology Project Collaboration): Measurements of Omega and Lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999) [astro-ph/9812133]

    Article  ADS  Google Scholar 

  18. Riess, A.G., et al. (Supernova Search Team Collaboration): Type Ia supernova discoveries at z≥1 from the Hubble Space Telescope: Evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 607, 665 (2004) [astro-ph/0402512]

    Article  ADS  Google Scholar 

  19. Carroll, S.M.: Why is the universe accelerating? eConf C0307282 (2003) TTH09 [AIP Conf. Proc. 743, 16 (2005), astro-ph/0310342]

    Google Scholar 

  20. Anselm, A.A.: Experimental test for arion leftrightarrow photon oscillations in a homogeneous constant magnetic field. Phys. Rev. D 37, 2001 (1988)

    Article  ADS  Google Scholar 

  21. Deffayet, C., Harari, D., Uzan, J.P., Zaldarriaga, M.: Dimming of supernovae by photon-pseudoscalar conversion and the intergalactic plasma. Phys. Rev. D 66, 043517 (2002) [hep-ph/0112118]

    Article  ADS  Google Scholar 

  22. Kuo, T.K., Pantaleone, J.T.: Neutrino oscillations in matter. Rev. Mod. Phys. 61, 937 (1989)

    Article  ADS  Google Scholar 

  23. Grossman, Y., Roy, S., Zupan, J.: Effects of initial axion production and photon axion oscillation on type Ia supernova dimming. Phys. Lett. B 543, 23 (2002) [hep-ph/0204216]

    Article  ADS  Google Scholar 

  24. Kronberg, P.P.: Extragalactic magnetic fields. Rept. Prog. Phys. 57, 325 (1994)

    Article  ADS  Google Scholar 

  25. Spergel, D.N., et al. (WMAP Collaboration): First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. 148, 175 (2003) [astro-ph/0302209]

    Article  ADS  Google Scholar 

  26. Anselm, A.A., Uraltsev, N.G.: A second massless axion? Phys. Lett. B 114, 39 (1982)

    ADS  Google Scholar 

  27. Anselm, A.A., Uraltsev, N.G.: Long range ‘arion’ field in the radiofrequency band. Phys. Lett. B 116, 161 (1982)

    Article  ADS  Google Scholar 

  28. Brockway, J.W., Carlson, E.D., Raffelt, G.G.: SN 1987A gamma-ray limits on the conversion of pseudoscalars. Phys. Lett. B 383, 439 (1996) [astro-ph/ 9605197]

    Article  ADS  Google Scholar 

  29. Grifols, J.A., Massó, E., Toldrá, R.: Gamma rays from SN 1987A due to pseudoscalar conversion. Phys. Rev. Lett. 77, 2372 (1996) [astro-ph/9606028]

    Article  ADS  Google Scholar 

  30. Csáaki, C., Kaloper, N., Terning, J.: (CKT II), Effects of the intergalactic plasma on supernova dimming via photon axion oscillations. Phys. Lett. B 535, 33 (2002) [hep-ph/0112212]

    Article  ADS  Google Scholar 

  31. Chen, P.: Resonant photon-graviton conversion and cosmic microwave background fluctuations. Phys. Rev. Lett. 74, 634 (1995); (E) ibid. 74, 3091 (1995)

    Article  ADS  Google Scholar 

  32. Mirizzi, A., Raffelt, G.G., Serpico, P.D.: Photon axion conversion as a mechanism for supernova dimming: Limits from CMB spectral distortion. Phys. Rev. D 72, 023501 (2005) [astro-ph/0506078]

    Article  ADS  Google Scholar 

  33. Fixsen, D.J., Cheng, E.S., Gales, J.M., Mather, J.C., Shafer, R.A., Wright, E.L.: The cosmic microwave background spectrum from the full COBE/FIRAS data set. Astrophys. J. 473, 576 (1996) [astro-ph/9605054]

    Article  ADS  Google Scholar 

  34. Mather, J.C., Fixsen, D.J., Shafer, R.A., Mosier, C., Wilkinson, D.T.: Calibrator design for the COBE far infrared absolute spectrophotometer (FIRAS). Astrophys. J. 512 (1999) 511 [astro-ph/9810373]

    Article  ADS  Google Scholar 

  35. Ostman, L., Mörtsell, E.: Limiting the dimming of distant type Ia supernovae. JCAP 0502, 005 (2005) [astro-ph/0410501]

    Google Scholar 

  36. Goobar, A., Mörtsell, E., Amanullah, R., Goliath, M., Bergström, L., Dahlen, T.: SNOC: a Monte-Carlo simulation package for high-z supernova observations. Astron. Astrophys. 392, 757 (2002) [astro-ph/0206409]

    Article  ADS  Google Scholar 

  37. Schneider, P., Ehlers, J., Falco, E.E.: Gravitational lenses. Springer-Verlag, Berlin (1992)

    Google Scholar 

  38. Bassett, B.A., Kunz, M.: Cosmic acceleration versus axion photon mixing. Astrophys. J. 607, 661 (2004) [astro-ph/0311495]

    Article  ADS  Google Scholar 

  39. Bassett, B.A., Kunz, M.: Cosmic distance-duality as a probe of exotic physics and acceleration. Phys. Rev. D 69, 101305 (2004) [astro-ph/0312443]

    Article  ADS  Google Scholar 

  40. Uzan, J.P., Aghanim, N., Mellier, Y.: The distance duality relation from hboxX-ray and Sunyaev-Zel’dovich observations of clusters. Phys. Rev. D 70, 083533 (2004) [astro-ph/0405620]

    Article  ADS  Google Scholar 

  41. Song, Y.S., Hu, W.: Constraints on supernovae dimming from photon-pseudo scalar coupling. Phys. Rev. D 73, 023003 (2006) [astro-ph/0508002]

    Article  ADS  Google Scholar 

  42. Eisenstein, D.J., et al.: Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633, 560 (2005) [astro-ph/0501171]

    Article  ADS  Google Scholar 

  43. Das, S., Jain, P., Ralston, J.P., Saha, R.: Probing dark energy with light: Propagation and spontaneous polarization. JCAP 0506, 002 (2005) [hep-ph/0408198]

    Google Scholar 

  44. Csáaki, C., Kaloper, N., Terning, J.: Exorcising w < –1. Annals Phys. 317, 410 (2005) [astro-ph/0409596]

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mirizzi, A., Raffelt1, G.G., Serpico, P.D. (2008). Photon-Axion Conversion in Intergalactic Magnetic Fields and Cosmological Consequences. In: Kuster, M., Raffelt, G., Beltrán, B. (eds) Axions. Lecture Notes in Physics, vol 741. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73518-2_7

Download citation

Publish with us

Policies and ethics