Skip to main content

Unconventional Models of Computation Through Non-standard Logic Circuits

  • Conference paper
Unconventional Computation (UC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4618))

Included in the following conference series:

Abstract

The classical (boolean) circuit model of computation is generalized via polynomial ring calculus, an algebraic proof method adequate to non-standard logics (namely, to all truth-functional propositional logics and to some non-truth-functional logics). Such generalization allows us to define models of computation based on non-standard logics in a natural way by using ‘hidden variables’ in the constitution of the model. Paraconsistent circuits for the paraconsistent logic mbC (and for some extensions) are defined as an example of such models. Some potentialities are explored with respect to computability and computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agudelo, J.C., Carnielli, W.: Quantum algorithms, paraconsistent computation and Deutsch’s problem. In: Prasad, B. (ed.) Proceedings of the 2nd Indian International Conference on Artificial Intelligence, Pune, India, pp. 1609–1628 (2005)

    Google Scholar 

  2. Boolos, G., Jeffrey, R.: Computability and logic, 3rd edn. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  3. Richard Büchi, J.: Turing-machines and the Entscheidungsproblem. Mathematische Annalen 148, 201–213 (1962)

    Article  MathSciNet  Google Scholar 

  4. Calabro, C.: Turing Machine vs. RAM Machine vs. Circuits. Lecture notes, available at http://www-cse.ucsd.edu/classes/fa06/cse200/ln2.ps

  5. Coniglio Carlos Caleiro, M.E., Carnielli, W., Marcos, J.: Two’s company: the humbug of many logical values. In: Beziau, J.-Y. (ed.) Logica Universalis, pp. 169–189. Birkhäuser Verlag, Basel, Switzerland (preprint available at) http://wslc.math.ist.utl.pt/ftp/pub/CaleiroC/05-CCCM-dyadic.pdf

  6. Carnielli, W.A.: Polynomial ring calculus for many-valued logics. In: Werner, B. (ed.) Proceedings of the 35th International Symposium on Multiple-Valued Logic, pp. 20–25. IEEE Computer Society, Los Alamitos (2005), (preprint available at CLE e-Prints vol 5(3), 2005), http://www.cle.unicamp.br/e-prints/vol_5,n_3,2005.html

  7. Carnielli, W.A., Coniglio, M.E., Marcos, J.: Logics of Formal Inconsistency. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn. vol. 14, Kluwer Academic Publishers, Dordrecht (2005), (in print. preprint available at CLE e-Prints vol 5(1), 2005), http://www.cle.unicamp.br/e-prints/vol_5,n_1,2005.html

  8. Chuang, I.L., Nielsen, M.A.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  9. Clote, P., Kranakis, E.: Boolean Functions and Computation Models. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  10. Cook, S.A.: The complexity of theorem proving procedures. In: Proceedings of the Third Annual ACM Symposium on the Theory of Computing, pp. 151–158. ACM Press, New York (1971)

    Chapter  Google Scholar 

  11. Copeland, J.: Hypercomputation. Minds and machines 12, 461–502 (2002)

    Article  MATH  Google Scholar 

  12. Davis, M.: The myth of hypercomputation. In: Teuscher, C. (ed.) Alan Turing: Life and Legacy of a Great Thinker, pp. 195–212. Springer, Heidelberg (2004)

    Google Scholar 

  13. Davis, M.: Why there is no such discipline as hypercomputation. Applied Mathematics and Computation 178, 4–7 (2004)

    Article  Google Scholar 

  14. Genovese, M.: Research on hidden variable theories: A review of recent progresses. Physics Reports 413, 319–396 (2005)

    Article  MathSciNet  Google Scholar 

  15. Halpern, J.Y., Harper, R., Immerman, N., Kolaitis, P.G., Vardi, M.Y., Vianu, V.: On the unusual effectiveness of logic in computer science. The Bulletin of Symbolic Logic 7(2), 213–236 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jacobson, N.: Basic Algebra I, 2nd edn. W. H. Freeman and Company, New York (1985)

    MATH  Google Scholar 

  17. Papadimitriou, C.: Computational Complexity. Adisson-Wesley, London, UK (1994)

    MATH  Google Scholar 

  18. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. In: Proceedings of the London Mathematical Society, pp. 230–265 (1936) (A correction, ibid, vol 43, pp. 544–546, 1936-1937)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Selim G. Akl Cristian S. Calude Michael J. Dinneen Grzegorz Rozenberg H. Todd Wareham

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Agudelo, J.C., Carnielli, W. (2007). Unconventional Models of Computation Through Non-standard Logic Circuits. In: Akl, S.G., Calude, C.S., Dinneen, M.J., Rozenberg, G., Wareham, H.T. (eds) Unconventional Computation. UC 2007. Lecture Notes in Computer Science, vol 4618. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73554-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73554-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73553-3

  • Online ISBN: 978-3-540-73554-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics