Skip to main content

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 365))

Abstract

The main objective of the Action Group was to investigate the potential benefits of nonlinear design and analysis methods for control law development in aerospace vehicles. To guarantee the industrial relevance of the project, two highly realistic simulation models were developed, together with demanding design/analysis challenges. These benchmarks in themselves represent significant achievements of the project, since there are still very few industrially relevent aircraft models, with realistic design and analysis specifications, available in the open literature on which control theoreticians can test and validate new techniques and algorithms. An additional benefit of the on-ground transport aircraft benchmark developed by Airbus for the project is that it represents a non-standard control application (at least in the context of aerospace control!) and thus adds another new and challenging set of problems to those traditionally addressed by flight control law designers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dynasim AB. Dymola — User’s Manual. http://www.dynasim.se/, 1994–2006.

    Google Scholar 

  2. T. Alamo, A. Cepeda, and D. Limon. Improved computation of ellipsoidal invariant sets for saturated control systems. In Proceedings of the 44th IEEE Conference on Decision and. Control, pages 6216–6221, Seville, Spain, December 2005.

    Google Scholar 

  3. F. Amato, M. Mattei, S. Scala, and L. Verde. Robust flight control design for the HIRM (High Incidence Research Model) via linear quadratic methods. In Proceedings of AIAA. Guidance, Navigation, and Control Conference and Exhibit, Boston, MA, August 1998.

    Google Scholar 

  4. N. Ananthkrishnan and NK. Sinha. Level Flight Trim and Stability Analysis Using an Extended Bifurcation and Continuation Procedure. AIAA, 24(6):1225–1228, 2001.

    Google Scholar 

  5. P. Apkarian and R. Adams. Advanced Gain-Scheduling Techniques for Uncertain Systems. IEEE Trans Control Systems Technology,6(1):21–32, 1998.

    Article  Google Scholar 

  6. P. Apkarian and P. Gahinet. A Convex Characterization of Gain-Scheduled H Controllers. tac, 40(5):853–864, May 1995.

    MATH  MathSciNet  Google Scholar 

  7. P. Apkarian, P. Gahinet, and G. Becker. Self-Scheduled H Control of Linear Parameter-Varying Systems: A Design Example. Automatica, 31:1251–1261, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  8. K. J. Åström and L. Rundqwist. Integrator windup and how to avoid it. In Proceedings of. the American Control Conference, pages 1693–1698, Pittsburgh, USA, June 1989.

    Google Scholar 

  9. G. Avanzini and G. de Matteis. Bifurcation analysis of a highly augmented aircraft model. Journal of Guidance, Control and Dynamics, 20(4):754–759, 1997.

    MATH  Google Scholar 

  10. H. Backström. Report on the usage of the Generic Aerodata Model. Technical report, Saab Aircraft AB, Linköping, 1997.

    Google Scholar 

  11. E. Bakker, L. Nyborg, and H. B. Pacejka. Tyre modeling for use in vehicle dynamic studies. In SAE paper 870421-SAE Inc. Warrendale, PA, 1987.

    Google Scholar 

  12. G. Balas, J. Doyle, K. Glover, A. Packard, and R. Smith. μ-Analysis and Synthesis Toolbox. The MathWorks Inc., Natick MA, June 1998.

    Google Scholar 

  13. G. Balas, J. Mueller, and J. Barker. Application of Gain-Scheduled, Multivariable Control Techniques the F/A-18 System Research Aircraft. Technical Report 99-4206, AIAA, 1999.

    Google Scholar 

  14. G. J. Balas, R. Chiang, A. Packard, and M. Safonov. Robust control toolbox v3.0, 2006.

    Google Scholar 

  15. J. Bals, G. Hofer, A. Pfeiffer, and C. Schallert. Virtual Iron Bird — A Multidisciplinary Modelling And Simulation Platform For New Aircraft System Architectures. In DGLR. Luft-und Raumfahrtkongress 2005, Friedrichshafen, DGLR-Jahrbuch 2005, 2005.

    Google Scholar 

  16. C. Barbu, R. Reginatto, A. R. Teel, and L. Zaccarian. Anti-windup for exponentially unstable linear systems with inputs limited in magnitude and rate. In Proceedings of the. American Control Conference, pages 1230–1234, Chicago, USA, June 2000.

    Google Scholar 

  17. J.M. Barker and G. Balas. Flight Control of a Tailless Aircraft via Linear Parameter Varying Techniques. Technical Report 99-4133, 1999, AIAA.

    Google Scholar 

  18. A. G. Barmes and T. J. Yager. Enhancement of aircraft ground handling simulation capability. In AGARD-AG-333, PA, 1998. NATO.

    Google Scholar 

  19. G. Becker and A. Packard. Robust Performance of Linear Parametrically Varying Systems Using Parametrically Dependent Linear Dynamic Feedback. Systems and Control Letters, 23(3):205–215, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  20. C. Belcastro, T.H. Khong, Shin. J.Y., H. Kwatny, B.C. Chang, and G. Balas. Uncertainty Modeling for Robustness Analysis of Aircraft Control Upset Prevention and Recovery Systems. In AIAA Guidance, Navigation, and Control Conference, San Francisco, CA, August 2005.

    Google Scholar 

  21. C.M. Belcastro and B.C. Chang. On parametric uncertainty modeling for real parameter variations. In IEEE Conference on Decision and Control, December 1992.

    Google Scholar 

  22. C.M. Belcastro and B.C. Chang. LFT Formulation for Multivariable Polynomial Problems. In American Control Conference, pages 1002–1007, Philadelphia, PA, June 1998.

    Google Scholar 

  23. J-M. Biannic, P. Apkarian, and W. Garrard. Parameter Varying Control of a High-Performance Aircraft. AIAA, 20(2):225–231, 1997.

    MATH  Google Scholar 

  24. J-M. Biannic and C. Doll. Graphical tools for creating and simulating interconnected LFR objects. In IEEE-CCA-CACSD Conference, Munich, Germany, October 2006.

    Google Scholar 

  25. J-M. Biannic and C. Doll. Simulink handling of LFR objects. Free Web publication http://www.cert.fr/dcsd/idco/perso/Biannic/mypage.html, 2006.

    Google Scholar 

  26. J-M. Biannic and G. Ferreres. Efficient computation of a guaranteed robustness margin. In Proceedings of the 16th IFAC World Congress, Prague, Czech Republic, July 2005.

    Google Scholar 

  27. J-M. Biannic, S. Tarbouriech, and D. Farret. A practical approach to performance analysis of saturated systems with application to fighter aircraft flight controllers. In Proceedings of. the 5th IFAC Symposium on Robust Control Design, 2006.

    Google Scholar 

  28. J. H. Blakelock. Automatic Control of Aircraft and Missiles. Wiley, New York, NY, 2nd edition, 1991.

    Google Scholar 

  29. R. P. Braatz, P. M. Young, J. C. Doyle, and M. Morari. Computational complexity of µ calculation. IEEE Transactions on Automatic Control, 39(5):1000–1002, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  30. F. Bullo and A. D. Lewis. Geometric Control of Mechanical Systems. Springer, New York, NY, 2004.

    Google Scholar 

  31. C. Burgat and S. Tarbouriech. Intelligent anti-windup for systems with input magnitude saturation. International Journal of Robust and Nonlinear Control, 8(12):1085–1100, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  32. Y.Y. Cao, Z. Lin, and D.G. Ward. An antiwindup approach to enlarging domain of attraction for linear systems subject to actuator saturation. IEEE Transactions on Automatic Control, 47(1):140–145, 2002.

    Article  MathSciNet  Google Scholar 

  33. J.V. Carroll and R. K. Mehra. Bifurcation Analysis of Nonlinear Aircraft Dynamics. AIAA, 5(5):529–536, 1982.

    MATH  Google Scholar 

  34. R. Carter, J. M. Gablonsky, A. Patrick, C. T. Kelley, and O. J. Eslinger. Algorithms for noisy problems in gas transmission pipeline optimization. Optimization and Engineering, 2(2):139–157, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  35. G. Charles, M Lowenberg, D Stoten, X Wang, and M. di Bernardo. Aircraft Flight Dynamics Analysis and Controller Design Using Bifurcation Tailoring. In AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, CA, August 2002. AIAA-2002-4751.

    Google Scholar 

  36. S. Chetty, G. Deodhare, and B. B. Misra. Design, development and flight testing of control laws for the indian light combat aircraft. In Proceedings of the AIAA Guidance, Navigation. and Control Conference, Monterey, California, 2002. AIAA-2002-4649.

    Google Scholar 

  37. Y. S. Chou and A. L. Tits. On robust stability under slowly-varying memoryless uncertainty. In Proceedings of the 34th IEEE Conference on Decision and Control, pages 4321–4326, New Orleans, USA, December 1995.

    Google Scholar 

  38. J. Clot. Système d’alarme et de sécurité active pour la conduite automobile. Technical Report 98441, LAAS-CNRS, October 1998.

    Google Scholar 

  39. J. Clot, J. Falipou, T. Sentenac, P. Pebayle, F. Lorenzi, and S. Marchant. Systeme d’alarme et de securite active pour la conduite automobile. Technical Report 98441, LAAS-CNRS, October 1998.

    Google Scholar 

  40. J. C. Cockburn. Multidimensional realizations of systems with parametric uncertainty. In Mathematical Theory of Networks and Systems, Perpignan, France, June 2000.

    Google Scholar 

  41. J. C. Cockburn and B. G. Morton. Linear Fractional Representations of Uncertain Systems. Automatica, 33(7):1263–1271, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  42. J. W. Curtis and R. W. Beard. A graphical understanding of Lyapunov-based nonlinear control. In Proc. CDC’ 02, pages 2278–2283, Las Vegas, NV, 2002. Session WeP10-1.

    Google Scholar 

  43. L. Daga. RealTime Blockset for MATLAB. http://digilander.libero.it/LeoDaga/Simulink/RTBlockset.htm, 2004.Retrived 17th March 2007.

    Google Scholar 

  44. R. D’Andrea and S. Khatri. Kalman decomposition of linear fractional transformation representations and minimality. In American Control Conference, pages 3557–3561, Alburquerque, NM, June 1997.

    Google Scholar 

  45. B. Dang-Vu and D. Brocas. Closed-Loop Constrained Control Allocation for a Supermaneuverable Aircraft. In Proceedings of 21st ICAS Congress, Melbourne, Australia, 1998.

    Google Scholar 

  46. L. Davis, editor. Handbook of genetic algorithms. Van Nostrand Reinhold, New York, 1991.

    Google Scholar 

  47. K. Deb. Optimisation for engineering design algorithms and examples. Prentice-Hall of India, New Delhi, 1995.

    Google Scholar 

  48. S. Dietz, G. Scherer, G. Looye, and S. Bennani. Diffedrent LMI Synthesis Techniques to Design a Flexible Aircraft Gust Response Control Law. Technical Report 2003-5418, AIAA, 2003.

    Google Scholar 

  49. Littleboy DM and Smith PR. Bifurcation Analysis of a High Incidence Aircraft with Nonlinear Dynamic Inversion Control. In AIAA Atmospheric Flight Mechanics Conference, New Orleans, LA, Collection of Technical Papers, 1997.

    Google Scholar 

  50. J. Doyle. Analysis of feedback systems with structured uncertainties. IEE Proceedings, Part D, 129(6):242–250, 1982.

    MathSciNet  Google Scholar 

  51. J. Duprez. Automatisation du pilotage au sol pour la navigation aéroportuaire. Doctorat, Université Paul Sabatier, LAAS Report No04633, September 2004.

    Google Scholar 

  52. J. Duprez, F. Mora-Camino, and F. Villaume. Aircraft-on-ground lateral control for low speed manœuvers. In Proceedings of the 16th IFAC Symposium on Automatic Control in. Aerospace, St. Petersburg, Russia, June 2004.

    Google Scholar 

  53. WC. Durham, JG. Bolling, and KA. Bordignon. Minimum Drag Control Allocation. AIAA, 20(1):190–198, 1996.

    Google Scholar 

  54. WC. Durham, F. Lutze, and Mason W. Kinematics and aerodynamics of the velocity vector roll. Technical Report 1993-3625, AIAA, 1993.

    Google Scholar 

  55. H. Elmqvist. Object-Oriented Modeling and Automatic Formula Manipulation in Dymola. In SIMS’ 93, Scandinavian Simulation Society, Kongberg, Norway, June 1993.

    Google Scholar 

  56. H. Elmqvist and M. Otter. Methods for Tearing Systems of Equations in Object-Oriented Modeling. In Proceedings of the European Simulation Multiconference (ESM’94), pages 326–332, Barcelona, Spain, 1994.

    Google Scholar 

  57. H. Elmqvist, M. Otter, and F. Cellier. Inline integration: A new mixed symbolic /numeric approach for solving differential-algebraic equation systems. In Keynote Address, Proc. ESM’95, European Simulation Multiconference, Prague, Czech Republic, June 5–8, 1995, pp. xxiii–xxxiv., 1995.

    Google Scholar 

  58. D. Enns, D. Bugajski, R. Hendrick, and G. Stein. Dynamic Inversion: an evolving methodology for flight control design. International Journal of Control, 59(1):71–91, 1994.

    Article  MATH  Google Scholar 

  59. M. K. H. Fan, A. L. Tits, and J. C. Doyle. Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics. IEEE Transactions on Automatic Control, 36(1):25–38, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  60. J. Farrell, M. Polycarpou, and M. Sharma. Adaptive backstepping with magnitude, rate, and bandwidth constraints: Aircraft longitude control. In Proc. American Control Conference, 2003, volume 5, pages 3898–3904, Denver, CO, June 4–6 2003.

    Article  Google Scholar 

  61. J. Farrell, M. Sharma, and M. Polycarpou. On-line approximation based aircraft longitudinal control. In Proc. American Control Conference 2003, volume 2, pages 1011–1019, Denver, CO, June 4–6 2003.

    Article  Google Scholar 

  62. Application of multivariable control theory to aircraft control laws: Final report-Multivarable control design. Technical report, Honeywell TC and Lockheed Martin Skunk Works, May 1996.

    Google Scholar 

  63. G. Ferreres. A practical approach to robustness analysis with aeronautical applications. Springer Verlag, 1999.

    Google Scholar 

  64. G. Ferreres and J-M. Biannic. Reliable computation of the robustness margin for a flexible transport aircraft. Control Engineering Practice, 9(12):1267–1278, 2001.

    Article  Google Scholar 

  65. G. Ferreres and V. Fromion. Computation of the robustness margin with the skewed µ tool. Systems and Control Letters, 32(4):193–202, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  66. G. Ferreres and C. Roos. Robust feedforward design in the presence of LTI/LTV uncertainties. International Journal of Robust and Nonlinear Control, 2007.

    Google Scholar 

  67. H. A. Fertik and C.W. Ross. Direct digital control algorithm with anti-windup feature. ISA Transactions, 6:317–328, 1967.

    Google Scholar 

  68. C. Fielding, A. Varga, S. Bennani, and M. Selier, editors. Advanced techniques for clearance of flight control laws. Number 283 in Lecture notes in control and information sciences. Springer Verlag, 2002.

    Google Scholar 

  69. D. E. Finkel and C. T. Kelley. Convergence analysis of the direct algorithm. Technical Report CRSC-TR04-28, N. C. State University Center for Research in Scientific Computation, July 2004.

    Google Scholar 

  70. P. J. Fleming and R. C. Purshouse. Evolutionary algorithms in control systems engineering: a survey. Control Engineering Practice, 10(11):1223–1241, 2002.

    Article  Google Scholar 

  71. L. Forssell and U. Nilsson. ADMIRE The Aero-Data Model in a Research Environment. Version 4.0. Model description. Technical Report FOI-R—1624—SE, Swedish Defence Research Agency, Stockholm, December 2005.

    Google Scholar 

  72. L. S. Forssell. Flight clearance analysis using global nonlinear optimisation based search algorithms. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Austin, Texas, August 2003.

    Google Scholar 

  73. L. S. Forssell. Personel communication, March 2004.

    Google Scholar 

  74. L. S. Forssell, G. Hovmark, Å. Hyden, and F. Johansson. The aero-data model in a research environment (admire) for flight control robustness evaluation. Technical Report TP-119-7, GARTEUR, August 2001.

    Google Scholar 

  75. L. S. Forssell and Å. Hyden. Flight control system validation using global nonlinear optimisation algorithms. In Proceedings of the European Control Conference, Cambridge, U.K., September 2003.

    Google Scholar 

  76. P. Gahinet and P. Apkarian. A Linear Matrix Inequality approach to H control. International Journal of Robust and Nonlinear Control, 4:421–448, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  77. P. Gahinet, P. Apkarian, and M. Chilali. Affine Parameter-Dependent Lyapunov Functions for Real Parametric Uncertainty. In Proceedings of IEEE Conference on Decision and Control, pages 2026–2031, 1994.

    Google Scholar 

  78. P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali. LMI control toolbox. The Mathworks, Inc., 1995.

    Google Scholar 

  79. P. Gahinet, A. Nemirovsky, A. Laub, and M. Chilali. LMI Control Toolbox. TheMathWorks Inc, Natick MA, 1995.

    Google Scholar 

  80. J.P. Garcia and D. Martín. System description note relating to nose landing gear wheels and brakes/steering. Technical report, Airbus.

    Google Scholar 

  81. T. Glad and O. Härkegård. Backstepping control of a rigid body. In Proceedings of the 41st IEEE Conference on Decision and Control 2002, volume 4, pages 3944–3945, Las Vegas, NV, December 10–13 2002.

    Article  Google Scholar 

  82. D. E. Goldberg. Genetic algorithms in search, optimization and machine learning. Addison-Wesley, 1989.

    Google Scholar 

  83. MG Goman and AV Khramtsovsky. Global stability analysis of nonlinear aircraft dynamics. In AIAA Atmospheric Flight Mechanics Conference, New Orleans, LA, Collection of Technical Papers, pages 662–672, 1997. AIAA-97-3721.

    Google Scholar 

  84. MG Goman and AV Khramtsovsky. Application of Bifurcation and Continuation Methods for an Aircraft Control Law Design. Philosophical Transections of the Royal Society of London, Series A, 356(1745):2277–2295, 1998. The Theme Issue Flight Dynamics of High Performance Manoeuvrable Aircraft.

    Article  MathSciNet  Google Scholar 

  85. MG. Goman and A.V. Khramtsovsky. Computational Framework for Investigation of Aircraft Nonlinear Dynamics. Journal Advances in Engineering Software, 2007. Elsevier Ltd., doi:10.1016/j.advengsoft.2007.02.004.

    Google Scholar 

  86. MG. Goman and EN. Kolesnikov. Robust Nonlinear Dynamic Inversion Method for an Aircraft Motion Control. Technical Report 98-4208, AIAA, 1998.

    Google Scholar 

  87. M.G. Goman, Y. Patel, and A.V. Khramtsovsky. Flight Clearance Tools Using a Nonlinear Bifurcation Analysis Framework. In AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, TX, 2003. AIAA-2003-5557.

    Google Scholar 

  88. MG Goman, GI Zagaynov, and AV Khramtsovsky. Application of Bifurcation Theory to Nonlinear Flight Dynamics Problems. Progress in Aerospace Sciences, 33:539–586, 1997.

    Article  Google Scholar 

  89. J.M. Gomes da Silva Jr. and S. Tarbouriech. Stability regions for linear systems with saturating controls. In Proceedings of the 5th European Control Conference, Karlsruhe, Germany, September 1999.

    Google Scholar 

  90. J.M. Gomes da Silva Jr. and S. Tarbouriech. Antiwindup design with guaranteed regions of stability: an LMI-based approach. IEEE Transactions on Automatic Control, 50(1):106–111, 2005.

    Article  MathSciNet  Google Scholar 

  91. P. Guicheteau. Application de la Théorie des bifurcations a l’étude del pertes de controle sur avion de combat. Technical Report 2, La Recherche Aerospatiale, 1982. 61–73.

    Google Scholar 

  92. P. Guicheteau. Bifurcation Theory: A Tool for Nonlinear Flight Dynamics. Philosophical Transactions of the Royal Society of London, Series A, 356(1745):2181–2201, 1998. The Theme Issue Flight Dynamics of High Performance Manoeuvrable Aircraft.

    Article  MathSciNet  Google Scholar 

  93. Duda H., Bouwer G., Bauschat J.M., and Hahn K.-U. In: J.F. Magni, S. Bennani, J. Terlouw, Eds. Robust Flight Control, a Design Challenge., chapter A Model Following Control Approach, pages 116–124, 360–378. Lecture Notes in Control and Information Sciences, Vol 224. Springer-Verlag, 1997.

    Google Scholar 

  94. O. Härkegård and T. Glad. A backstepping design for flight path angle control. In Proc. 39th IEEE Conference on Decision and Control, volume 4, pages 3570–3575, Sydney, Australia, December 12–15 2000.

    Google Scholar 

  95. A. Heck. Introduction to Maple. Springer-Verlag, 1993.

    Google Scholar 

  96. S. Hecker, A. Varga, and J-F. Magni. Enhanced LFR Toolbox for MATLAB. In IEEE International symposium on computer aided control system design, Taipei, Taiwan, September 2004.

    Google Scholar 

  97. S. Hecker, A. Varga, and J-F. Magni. Enhanced LFR Toolbox for Matlab. In IEEE International Symposium on Computer Aided Control System Design, pages 25–29, Taipei, Taiwan, September 2004.

    Google Scholar 

  98. S. Hecker, A. Varga, and J.F. Magni. Enhanced LFR-Toolbox for Matlab. Aerospace Science and Technology, 9(2), 2005.

    Google Scholar 

  99. D. Henrion and S. Tarbouriech. LMI relaxations for robust stability of linear systems with saturating controls. Automatica, 35(9):1599–1604, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  100. H. Hindi and S. Boyd. Analysis of linear systems with saturation using convex optimization. In Proceedings of the 37th IEEE Conference on Decision and Control, pages 903–908, Tampa, USA, December 1998.

    Google Scholar 

  101. T. Hu and Z. Lin. Control systems with actuator saturation: analysis and design. Birkhäuser, 2001.

    Google Scholar 

  102. T. Hu, A.R. Teel, and L. Zaccarian. Nonlinear \( \mathcal{L}_2 \) gain and regional analysis for linear systems with anti-windup compensation. In Proceedings of the American Control Conference, pages 3391–3395, Portland, USA, June 2005.

    Google Scholar 

  103. ICAO. Manual of the ICAO Standard Atmosphere, 3 edition, 1993. Doc 7488.

    Google Scholar 

  104. Alberto Isidori. Nonlinear Control Systems: An Introduction, volume 72 of Lecture Notes in Control and Information Sciences. Springer-Verlag, Berlin, 1985.

    MATH  Google Scholar 

  105. T. Iwasaki and S. Hara. Generalized KYP lemma: unified frequency domain inequalities with design applications. IEEE Transactions on Automatic Control, 50(1):41–59, 2005.

    Article  MathSciNet  Google Scholar 

  106. T. Iwasaki, G. Meinsma, and M. Fu. Generalized S-Procedure and finite frequency KYP lemma. Mathematical Problems in Engineering, 6:305–320, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  107. Doyle J., K Glover, P Khargonekar, and B. Francis. State-space solutions to standard H 2 and H control problems. tac, 34(8):831–847, August 1989.

    MATH  MathSciNet  Google Scholar 

  108. CC Jahnke and FEC Culick. Application of Bifurcation Theory to the High-Angle-of-Attack Dynamics of the F-14. Journal of Aircraft, 31(1):26–34, 1994.

    Google Scholar 

  109. Matthieu Jeanneau. Description of aircraft ground dynamics. Technical report, Airbus France, 2005. Confidential.

    Google Scholar 

  110. M. Johansson and A. Rantzer. Computation of piecewise quadratic Lyapunov functions for hybrid systems. IEEE Transactions on Automatic Control, 43(4):555–559, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  111. Joint Aviation Authorities Committee. Joint Aviation Requirements, JAR-AWO All Weather Operations. Technical report, JAAC, August 1996. Change 2.

    Google Scholar 

  112. D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization without the lipschitz constant. Journal of Optimization Theory and Application, 79(1), 1993.

    Google Scholar 

  113. U. Jönsson and A. Rantzer. Systems with uncertain parameters-time-variations with bounded derivatives. International Journal of Robust and Nonlinear Control, 6(9–10):969–982, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  114. N. Kapoor, A. R. Teel, and P. Daoutidis. An anti-windup design for linear systems with input saturation. Automatica, 34(5):559–574, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  115. F Karlsson and L. Forssell. Aircraft Flight Control Design Challenge for use within the GARTEUR project “Nonlinear Methods in Aircraft Flight Control”. Technical Report TP-147-01, GARTEUR, 2006.

    Google Scholar 

  116. H. K. Khalil. Nonlinear Systems. MacMillan, 1992.

    Google Scholar 

  117. H. K. Khalil. Nonlinear Systems. Prentice Hall, NJ, third edition, 2002.

    Google Scholar 

  118. P. Kokotovic and M. Arcak. Constructive nonlinear control: A historical perspective. Automatica, 37(5):637–662, 2001.

    MATH  MathSciNet  Google Scholar 

  119. U. Korte. The industrial process for clearance of flight control laws of fighter aircraft. Technical Report TP-119-6, GARTEUR, January 2000.

    Google Scholar 

  120. U. Korte, S. Scala, F. Forssell, and H. Luijerink. Selected criteria for clearance of the admire flight control laws. addendum to the admire aircraft model. Technical Report TP-119-07-A1-v1, GARTEUR, July 2001.

    Google Scholar 

  121. M. V. Kothare and M. Morari. Stability analysis of anti-windup control scheme: a review and some generalizations. In Proceedings of the 4th European Control Conference, Brussels, Belgium, July 1997.

    Google Scholar 

  122. M. V. Kothare and M. Morari. Multiplier theory for stability analysis of anti-windup control systems. Automatica, 35(5):917–928, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  123. K. Krishnakumar and D. E. Goldberg. Control system optimisation using genetic algorithms. Journal of Guidance, Control and Dynamics, 15(3):735–739, 1992.

    MATH  Google Scholar 

  124. K. Krishnamkumar, R. Swaminathan, S. Garg, and S. Narayanaswamy. Solving the linear parameter optimisation problems using genetic algorithms. In Proceedings of the AIAA Guidance, Navigation and Control Conference, pages 449–460, Baltimore, MD, August 1995.

    Google Scholar 

  125. M. Krstić, I. Kanellakopoulos, and P. Kokotović. Nonlinear and Adaptive Control Design. Adaptive and Learning Systems for Signal Processing and Control. Wiley, New York, 1995.

    Google Scholar 

  126. P. Lambrechts, J. Terlouw, S. Bennani, and M. Steinbuch. Parametric Uncertainty Modeling using LFTs. In American Control Conference, pages 267–272, San Franciso, CA, June 1993.

    Google Scholar 

  127. J. Lampinen and I. Zelinka. Mechanical engineering design by differential evolution. In Marco Dorigo David Corne and Fred Glover, editors, New Ideas in Optimisation, pages 127–146. McGraw-Hill, London (UK), 1999.

    Google Scholar 

  128. SH. Lane and RF. Stengel. Flight Control Design Using Nonlinear Inverse Dynamics. auto, 24:471–483, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  129. F. Lavergne. Méthodologie de synthèses de lois de commande non linéaires et robustes: application au suivi de trajectoire des avions de transport. PhD thesis, Université Toulouse III — Paul Sabatier, 2005.

    Google Scholar 

  130. C. T. Lawrence, A. L. Tits, and P. Van Dooren. A fast algorithm for the computation of an upper bound on the µ-norm. Automatica, 36(3):449–456, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  131. T. Lee and Y. Kim. Nonlinear adaptive flight control using backstepping and neural networks controller. J. Guidance, Control and Dynamics, 24(4):675–682, July–August 2001.

    Google Scholar 

  132. D.J. Leith and W.E. Leithead. Survey of Gain-Scheduling analysis and Design. International Journal of Control, 73(11):1001–1025, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  133. R. Lind, G. J. Balas, and A. Packard. Robustness analysis with linear time-invariant and time-varying real uncertainty. In Proceedings of the AIAA Guidance, Navigation and Control Conference, pages 132–140, Baltimore, USA, August 1995.

    Google Scholar 

  134. P. Lindroth, U. Nilsson, F. Jarsved, and H. Toghian. TVC-Admire, Slutrapport. Technical report, Institutionen för Flygteknik, KTH, 1999.

    Google Scholar 

  135. F. G. Lobo and D. E. Goldberg. Decision making in a hybrid genetic algorithm. Technical Report 96009, IlliGAL, September 1996.

    Google Scholar 

  136. H. Logemann and E.P. Ryan. Asymptotic behaviour of nonlinear systems. American Mathematical Monthly, 111:864–889, December 2004.

    Article  MathSciNet  Google Scholar 

  137. G. Looye, S. Hecker, T. Kier, C. Reschke, and J. Bals. Multi-disciplinary aircraft model development using object-oriented modelling techniques. In DGLR Jahrbuch. Deutsche Gesellschaft für Luft-und Raumfahrt, 2005.

    Google Scholar 

  138. Gertjan Looye. Integrated Flight Mechanics and Aeroelastic Aircraft Modeling using Object-Oriented Modeling Techniques. In Proceedings of the AIAA Modeling and Simulation Technologies Conference, Portland, USA, August 1999. AIAA-99-4192.

    Google Scholar 

  139. Gertjan Looye. Design of Robust Autopilot Control Laws with Nonlinear Dynamic Inversion. at — Automatisierungstechnik, 49(12), 2001.

    Google Scholar 

  140. Gertjan Looye. Integration of Rigid and Aeroelastic Aircraft Models using the Residualised Model Method. In Proceedings of the International Forum on Aeroelasticity and Structural Dynamics (IFASD), Munich, Germany, June 2005.

    Google Scholar 

  141. Gertjan Looye, Michael Thümmel, Matthias Kurze, Martin Otter, and Johann Bals. Nonlinear Inverse Models for Control. In Proceedings of the third international Modelica conference, Hamburg, March 2005.

    Google Scholar 

  142. M.H. Lowenberg. Bifurcation analysis as a tool for post-departure stability enhancement. AIAA Paper, 3716:11–13, 1997.

    Google Scholar 

  143. M.H. Lowenberg and Y. Patel. Use of Bifurcation Diagrams in Piloted Test Procedures. Aeronautical Journal of the RAeS, 104(1035):225–235, 2000.

    Google Scholar 

  144. B. Lu, F. Wu, and S. Kim. Linear parameter varying anti-windup compensation for enhanced flight control performance. AIAA Journal of Guidance, Control and Dynamics, 28(3):494–504, 2005.

    Google Scholar 

  145. J. H. Ly, R. Y. Chiang, K. C. Goh, and M. G. Safonov. LMI multiplier Km/µ analysis of the Cassini spacecraft. International Journal of Robust and Nonlinear Control, 8(2):155–168, 1998.

    Article  MATH  Google Scholar 

  146. FBJ. Macmillen and JMT. Thompson. Bifurcation Analysis in the Flight Dynamics Design Process? A view from the Aircraft Industry. Philosophical Transactions of the Royal Society of London, Series A, 356(1745):2321–2333, 1998. The Theme Issue Flight Dynamics of High Performance Manoeuvrable Aircraft.

    Article  MathSciNet  Google Scholar 

  147. J-F. Magni. Linear Fractional Representation Toolbox Modelling, Order Reduction, Gain Scheduling. Technical Report TR 6/08162 DCSD, ONERA, Systems Control and Flight Dynamics Department, Toulouse, France, January 2004.

    Google Scholar 

  148. J-F. Magni. Linear Fractional Representation Toolbox (version 2.0) for use with Matlab. Free Web publication http://www.cert.fr/dcsd/idco/perso/Magni/, 2006.

    Google Scholar 

  149. J. F. Magni, S. Bennani, and J. Terlouw, editors. Robust Flight Control, a Design Challenge., volume 224 of Lecture Notes in Control and Information Sciences. Springer-Verlag, 1997.

    Google Scholar 

  150. A. Marcos, D. G. Bates, and I. Postlethwaite. A Multivariate Polynomial Matrix Order Reduction Algorithm for Linear Fractional Transformation Modelling. In IFAC World Congress on Automatic Control, Pragues, July 2005.

    Google Scholar 

  151. A. Marcos, D.G. Bates, and I. Postlethwaite. Flight Dynamics Application of a New Symbolic Matrix Order-Reduction Algorithm. In International Conference on Polynomial Symbolic Systems, Paris, FR, November 2004.

    Google Scholar 

  152. A. Marcos, D.G. Bates, and I. Postlethwaite. Exact Nonlinear Modeling using Symbolic Linear Fractional Transformations. In IFAC World Congress, Praga, CH, June 2005.

    Google Scholar 

  153. C. I. Marrison and R. F. Stengel. Design of robust control systems for a hypersonic aircraft. AIAA, 21(1):58–63, 1998.

    MATH  Google Scholar 

  154. The MathWorks. Optimization toolbox user’s guide, version 2 edition, September 2000.

    Google Scholar 

  155. S.E. Mattsson and G. Söderlind. Index Reduction in Differential-Algebraic Equations using Dummy Derivatives. SIAM Journal on Scientific Computing, 14:677–692, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  156. A. Megretski and A. Rantzer. System analysis via integral quadratic constraints: Part i. Technical Report LUTD2/TFRT-7531-SE, Department of Automatic Control, Lund Institute of Technology, April 1995.

    Google Scholar 

  157. A. Megretski and S. Treil. Power distribution inequalities in optimization and robustness of uncertain systems. Journal of Mathematical Systems, Estimation and Control, 3(3):310–319, 1993.

    Google Scholar 

  158. R.K. Mehra, W.C. Kessel, and J. V. Carroll. Global Stability and Control Analysis of Aircraft at High Angles of Attack. Technical Report ONR-CR215-(1/2/3), Scientific Systems Inc., 1977/1978/1979. Annual Technical Reports 1/2/3.

    Google Scholar 

  159. G. Meinsma, T. Iwasaki, and M. Fu. When is (D,G)-scaling both necessary and sufficient. IEEE Transactions on Automatic Control, 45(9):1755–1759, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  160. G. Meinsma, Y. Shrivastava, and M. Fu. A dual formulation of mixed µ and on the losslessness of (D,G) scaling. IEEE Transactions on Automatic Control, 42(7):1032–1036, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  161. P. P. Menon, D. G. Bates, and I. Postlethwaite. Hybrid evolutionary optimisation methods for the clearance of nonlinear flight control laws. In Proceedings of CDC-ECC, Seville, December 2005.

    Google Scholar 

  162. P. P. Menon, D. G. Bates, and I. Postlethwaite. Hybrid optimisation scheme for the clearance of flight control laws. In Proceedings of IFAC World Congress, Prague, July 2005.

    Google Scholar 

  163. P. P. Menon, D. G. Bates, and I. Postlethwaite. A deterministic hybrid optimisation algorithm for nonlinear flight control system analysis. In Proceedings of American Control Conference, Minneapolis, 2006.

    Google Scholar 

  164. P. P. Menon, D. G. Bates, and I. Postlethwaite. Robustness analysis of nonlinear flight control laws over continuous region of the flight envelope. In Proceedings of IFAC Robust Control Design Symposium, Toulouse, July 2006.

    Google Scholar 

  165. P. P. Menon, J. Kim, D. G. Bates, and I. Postlethwaite. Improved clearance of flight control laws using hybrid optimisation. In Proceedings of the IEEE Conference on Cybernetics and Intelligent Systems, Singapore, December 2004.

    Google Scholar 

  166. P. P. Menon, A. A. Pashilkar, and K. Sudhakar. Identification of departure susceptibility for design of carefree maneuverable control scheme. Modeling, Simulation, Optimization for Design of Multi-disciplinary Engineering Systems (MSO-DMES) International Conf., Paper, 77, 2003.

    Google Scholar 

  167. G. Meyer et al. Nonlinear controller design for flight control systems. In Proc. IFAC Symp., Nonlinear Control Systems Design, Capri, pages 136–141, 1989.

    Google Scholar 

  168. MILSTD-1797A, Military Standard, Flying Qualities of Piloted aircraft. US Department of Defense, 1990.

    Google Scholar 

  169. MIL-F-8785C, Military specification, flying qualities of piloted airplanes, August 1996.

    Google Scholar 

  170. A. Miyamoto and G. Vinnicombe. Robust control of plants with saturation nonlinearity based on coprime factor representation. In Proceedings of the 35th IEEE Conference on Decision and Control, pages 2838–2840, Kobe, Japan, December 1996.

    Google Scholar 

  171. Modelica Design Group. Modelica: Language design for multi-domain modeling. http://www.modelica.org.

    Google Scholar 

  172. D. Moormann, P.J. Mosterman, and G. Looye. Object-oriented computational model building of aircraft flight dynamics and systems. Aerospace Science and Technology, 3(3), April 1999.

    Google Scholar 

  173. S. Mulgund, K. Harper, K. Krishnakumar, and G. Zacharias. Air combat tactics optimisation using stochastic genetic algorithms. In IEEE International Conference on Systems, Man and Cybernetics, La Jolla, CA, October 1998.

    Google Scholar 

  174. Philipp Nagel. Design of on-ground control laws for a civil transport aircraft. Technical report, Master’s Thesis University of Stuttgart, conducted at the DLR German Aerospace Center Oberpfaffenhofen, Institute of Robotics and Mechatronics, Oberpfaffenhofen, Germany, 2006. Confidential.

    Google Scholar 

  175. Martin Otter. Objektorientierte Modellierung mechatronischer Systeme am Beispiel Geregelter Roboter. PhD thesis, Fakultät für Maschinenbau der Ruhr-Universität Bochum, November 1995. VDI Vortschrittsberichte, Rechnergestützte Verfahren, Reihe 20, Nr. 147.

    Google Scholar 

  176. A. Packard and J. Doyle. The complex structured singular value. Automatica, 29(1):71–109, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  177. A. Packard and J. Doyle. The complex structured singular value. Automatica, 29(1):71–109, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  178. A. Packard and J. Doyle. The complex structured singular value. Automatica, 29(1):71–109, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  179. G. D. Padfield and M. D. White. Flight simulation in academia HELIFLIGHT in its first year of operation at the University of Liverpool. Aeronautical Journal, 107(1075):529–538,2003.

    Google Scholar 

  180. F. Paganini. Robust stability under mixed time varying, time invariant and parametric uncertainty. Automatica, 32(10):1381–1392, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  181. C.C. Pantelides. The consistent initialization of differential-algebraic systems. SIAM Journal of Scientific and Statistical Computing, 9:213–231, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  182. G. Papageorgiou and K. Glover. Design of a Robust Gain Scheduled Controller for the High Incidence Research Model. Technical Report 99-4276, AIAA, 1999.

    Google Scholar 

  183. G. Papageorgiou, K. Glover, G. D’Mello, and Y. Patel. Taking robust LPV control into flight on the VAAC Harrier. In The 39th IEEE Decision and Control Conference, pages 4558–4564, 2000.

    Google Scholar 

  184. A. Paranjape, NK. Sinha, and N. Ananthkrishnan. Use of Bifurcation and Continuation Methods for Aircraft Trim and Stability Analysis-A State-of-the-Art. In 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2007.

    Google Scholar 

  185. Y Patel and D Littleboy. Piloted Simulation Tools for Aircraft Departure Analysis. Philosophical Transactions of the Royal Society of London, Series A, 356(1745):2203–2221, 1998. The Theme Issue Flight Dynamics of High Performance Manoeuvrable Aircraft.

    Article  Google Scholar 

  186. M. Perhenschi. A modified genetic algorithm for the design of an autonoumous helicopter control system. In Proceedings of the AIAA Guidance, Navigation and Control Conference, pages 1183–1192, New Orlenes, LA, 1997. August.

    Google Scholar 

  187. J. Pinter. Globally convergent methods for n-dimensional multiextremal optimization. Optimisation, 17(2):187–202, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  188. JB Planeaux, JA Beck, and DD Baumann. Bifurcation Analysis of a Model Fighter Aircraft with Control Augmentation. Technical Report 1990-2836, AIAA, 1990.

    Google Scholar 

  189. K. Poolla and A. Tikku. Robust performance against time-varying structured perturbations. IEEE Transactions on Automatic Control, 40(9):1589–1602, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  190. R. W. Pratt. Flight control systems, volume 184 of Progress in Astronautics and Aeronautics. AIAA, 1999.

    Google Scholar 

  191. J. Protz and A. Sparks. An LPV Controller for a tailless fighter aircraft simulation. Technical Report 98-4298, AIAA, 1998.

    Google Scholar 

  192. Z. Qu. Robust Control of Nonlinear Systems. Wiley, New York, NY, 1998.

    MATH  Google Scholar 

  193. A. Rantzer. On the Kalman-Yakubovich-Popov lemma. Systems and Control Letters, 28(1):7–10, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  194. Christian Reschke. Flight Loads Analysis with Inertially Coupled Equations of Motion. In Proceedings of the AIAA Modeling and Simulation Technologies Conference and Exhibit 2005, San Francisco CA, 2005.

    Google Scholar 

  195. NATO Research and Technology Organisation. Flight Control Design-Best Practices. Technical Report RTO-TR-029, NATO-RTO, December 2000.

    Google Scholar 

  196. J.W.C. Robinson and U. Nilsson. Design of a nonlinear autopilot for velocity and attitude control using block backstepping. In Proc. AIAA Guidance, Navigation & Control Conf. & Exhibit’ 05, San Francisco CA, August 15–18 2005. AIAA paper 2005-6266.

    Google Scholar 

  197. T. Rogalsky and R. W. Derksen. Hybridization of differential evolution for aerodynamic design. In Procedings of the 8th Annual Conference of the Computational Fluid Dynamics Society of Canada, pages 729–736, 2000.

    Google Scholar 

  198. T. Rogalsky, R. W. Derksen, and S. Kocabiyik. Differential evolution in aerodynamic optimization. Canadian Aeronautics and Space Institute Journal, 46(4):183–190, 2000.

    Google Scholar 

  199. C. Roos and J-M. Biannic. On robustness analysis versus mixed LTI/LTV uncertainties. In Proceedings of the 5th IFAC Symposium on Robust Control Design, Toulouse, France, July 2006.

    Google Scholar 

  200. C. Roos and J-M. Biannic. A positivity approach to robust controllers analysis and synthesis versus mixed LTI/LTV uncertainties. In Proceedings of the American Control Conference, pages 3661–3666, Minneapolis, USA, June 2006.

    Google Scholar 

  201. L. Rundqwist, K. Ståhl-Gunnarsson, and J. Enhagen. Rate limiters with phase compensation in jas39 gripen. In Proceedings of the European Control Conference, pages 2451–2457, July 1997.

    Google Scholar 

  202. G. W. Ryan III. A genetic search technique for identification of aircraft departures. In Proceedings of the AIAA Flight Mechanics Conference, August 1995. AIAA-95-3453.

    Google Scholar 

  203. M. Saeki and N. Wada. Synthesis of a static anti-windup compensator via Linear Matrix Inequalities. International Journal of Robust and Nonlinear Control, 12(10):927–953, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  204. W. E. Schmitendorf, O. Shaw, R. Benson, and S. Forrest. Using genetic algorithms for controller design: simultaneous stabilization and eigenvalue placement in a region. In Proceedings of the AIAA Guidance, Navigation and Control Conference, pages 757–761, Hilton Head Island, SC, August 1992.

    Google Scholar 

  205. C. Schumacher and P.P. Khargonekar. Stability analysis of a missile control system with a dynamic inversion controller. J. Guidance, Control and Dynamics, 21(3):508–515, 1998.

    Google Scholar 

  206. C.J Schumacher, P.P. Khargonekar, and N.H. McClamroch. Stability analysis of dynamic inversion controllers using time-scale separation. In Proc. AIAA Guidance, Navigation, and Control Conference and Exhibit, Boston, MA, August 10–12 1998. AIAA paper 1998-4322.

    Google Scholar 

  207. AA. Schy and ME. Hannah. Prediction of Jump Phenomena in Roll-Coupled Maneuvers of Airplanes. Journal of Aircraft, 14(4):375–382, 1977.

    Article  Google Scholar 

  208. J. S. Shamma. Robust stability with time-varying structured uncertainty. IEEE Transactions on Automatic Control, 39(4):714–724, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  209. Shamma, F. and Athans, M. Gain scheduling: Potential hazards and possible remedies. IEEE Control Systems, pages 101–107, June 1992.

    Google Scholar 

  210. G. Shin, J. Balas and M. Kaya. Blending Methodology of Linear Parameter Varying Control Synthesis of F-16 Aircraft System. AIAA, 25(6):1040–1048, 2002.

    Google Scholar 

  211. B. Shubert. A sequential method seeking the global maximum of a function. SIAM Journal on Numerical Analysis, 9(3):379–388, 1972.

    Article  MATH  MathSciNet  Google Scholar 

  212. SN. Singh and WJ. Rugh. Decoupling in a class of nonlinear systems by state variable feedback. ASME Transactions Series G, Journal of Dynamic Systems, Measurement and Control, 94(4):323–329, 1972.

    MathSciNet  Google Scholar 

  213. S. Skogestad and I. Postlethwaite. Multivariable Feedback Control Analysis and Design. Wiley, May 1996.

    Google Scholar 

  214. Jean Jacques E Slotine and Weiping Li. Applied Nonlinear Control. Prentice Hall, Englewood Cliffs, N.J., 1991.

    MATH  Google Scholar 

  215. PR. Smith. A Simplified Approach to Nonlinear Dynamic Inversion Based Flight Control. Technical Report N98-4461, AIAA, 1998.

    Google Scholar 

  216. M. Spillman. Robust Longitudinal Flight Control Design Using Linear Parameter-Varying Feedback. AIAA, 23(1):101–108, 2000.

    Google Scholar 

  217. R. Steinhauser, G. Looye, and O. Brieger. Design and Evaluation of Control Laws for the X-31A with Reduced Vertical Tail. In Proceedings of the AIAA Guidance and Control Conference, Providence, Rhode Island, USA, August 2004. AIAA-2004-5031.

    Google Scholar 

  218. A. Steinicke and G. Michalka. Improving transient performance of dynamic inversion missile autopilot by use of backstepping. In Proc. AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, CA, August 5–8 2002. AIAA paper 2002-4658.

    Google Scholar 

  219. B. L. Stevens and F. L. Lewis. Aircraft Control and Simulation. John Wiley & Sons, Inc., New York, 2nd edition, 1992.

    Google Scholar 

  220. B. L. Stevens and F. L. Lewis. Aircraft Control and Simulation. John Wiley & Sons, Inc., New York, 2nd edition, 1992, 2000, 2003.

    Google Scholar 

  221. R. Storn and K. Price. Differential evolution: a simple and efficient heuristic for global optimization over continuous space. Journal of Global Optimization, 11(4):341–369, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  222. G. D. Sweriduk, P. K. Menon, and M. L. Steinberg. Robust command augmentation system design using genetic search methods. In Proceedings of the AIAA Guidance, Navigation and Control Conference, pages 296–304, Boston, MA, August 1998.

    Google Scholar 

  223. M. Sznaier and P. Parrilo. On the gap between μ and its upper bound for systems with repeated uncertainty blocks. In Proceedings of the 38th IEEE Conference on Decision and Control, pages 4511–4516, Phoenix, USA, December 1999.

    Google Scholar 

  224. S. Tarbouriech and J.M. Gomes da Silva Jr. Admissible polyhedra for discrete-time linear systems with saturating controls. In Proceedings of the American Control Conference, pages 3915–3919, Albuquerque, USA, June 1997.

    Google Scholar 

  225. S. Tarbouriech, C. Prieur, and J.M. Gomes da Silva Jr. Stability analysis and stabilization of systems presenting nested saturations. IEEE Transactions on Automatic Control, 51(8):1364–1371, 2006.

    Article  MathSciNet  Google Scholar 

  226. S. Tarbouriech, I. Queinnec, and G. Garcia. Stability region enlargement through anti-windup strategy for linear systems with dynamics restricted actuator. International Journal of System Science, 37(2):79–90, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  227. A. R. Teel. Anti-windup for exponentially unstable linear systems. International Journal of Robust and Nonlinear Control, 9(10):701–716, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  228. A. R. Teel and N. Kapoor. The L 2 anti-windup problem: its definition and solution. In Proceedings of the 4th European Control Conference, Brussels, Belgium, July 1997.

    Google Scholar 

  229. Michael Thümmel. Modellbasierte Regelung mit nichtlinearen inversen Systemen und Beobachtern zur Optimierung der Dynamik von Robotern mit elastischen Gelenken. PhD thesis, Lehrstuhl für Elektrische Antriebssysteme, Technische Universität München, 2006.

    Google Scholar 

  230. M. Turner and L. Zaccarian (Editors). Special issue: anti-windup. International Journal of System Science, 37(2):65–139, 2006.

    Google Scholar 

  231. M. Turner and S. Tarbouriech. Anti-windup for linear systems with sensor saturation: sufficient conditions for global stability and L 2 gain. In Proceedings of the 45th IEEE Conference on Decision and Control, pages 5418–5423, San Diego, USA, December 2006.

    Google Scholar 

  232. C. van Etten, G. Balas, and S. Bennani. Linear Parametrically Varying Integrated Flight and Structural Mode Control for a Flexible Aircraft. Technical Report 99-4217, AIAA, 1999.

    Google Scholar 

  233. A. Varga and G. Looye. Symbolic and Numerical Software tools for LFT-based Low Order Uncertainty Modeling. In IEEE Symposium on Computed Aided Control System Design, Hawai’i, USA, August 1999.

    Google Scholar 

  234. A. Varga, G. Looye, G. Moormann, and G. Grubel. Automated Generation of LFT-Based Parametric Uncertainty Descriptions from Generic Aircraft Models. Mathematical and Computer Modelling of Dynamical Systems, 4(4):249–274, 1998.

    Article  MATH  Google Scholar 

  235. A. Vooren. Expanding ADMIRE’s Aerodynamic Evelope for High Angles of Attack. Technical Report FOI-R—0771—SE, Swedish Defence Research Agency, Stockholm, 2003.

    Google Scholar 

  236. D.G. Ward, M. Sharma, and N.D. Richards. Intelligent control of unmanned air vehicles: Program summary and representative results. In Proc. 2nd AIAA “Unmanned Unlimited” Conf. and Workshop and Exhibit, San Diego, CA, September 15–18 2003. AIAA paper 2003-6641.

    Google Scholar 

  237. S. Wolfram. Mathematica: a System for Doing Mathematics by Computer. Addison-Wesley, 1991.

    Google Scholar 

  238. F. Wu and S.W. Kim. LPV Controller Interpolation for Improved Gain-Scheduling Control Performance. Technical Report 2002-4759, AIAA, 2002.

    Google Scholar 

  239. F. Wu and M. Soto. Extended anti-windup control schemes for LTI and LFT systems with actuator saturations. International Journal of Robust and Nonlinear Control, 14(15):1255–1281, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  240. F. Wu, X.H Yang, A. Packard, and G. Becker. Induced L 2-norm Control for LPV Systems with Bounded Parameter Variation Rates. ijrnc, 6:983–998, 1996.

    MATH  MathSciNet  Google Scholar 

  241. J. Yen, J. C. Liao, D. Randolph, and B. Lee. A hybrid approach to modeling metabolic systems using genetic algorithm and simplex method. In Proceedings of the 11th IEEE Conference on Artificial Intelligence for Applications, pages 277–283, Los Angeles, CA, February 1995.

    Google Scholar 

  242. JW. Young, AA. Schy, and KG. Jonson. Pseudosteady-State Analysis of Nonlinear Aircraft Maneuvers. Technical Report 1758, NASA, 1980.

    Google Scholar 

  243. P. M. Young and J. C. Doyle. A lower bound for the mixed μ problem. IEEE Transactions on Automatic Control, 42(1):123–128, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  244. P. M. Young, M. P. Newlin, and J. C. Doyle. Computing bounds for the mixed μ problem. International Journal of Robust and Nonlinear Control, 5(6):573–590, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  245. G. I. Zagaynov and M. G. Goman. Bifurcation Analysis of Critical Aircraft Flight Regimes. In Proceedings of the 14th Congress of ICAS, volume 1, pages 217–223, Toulouse, France, 1984.

    Google Scholar 

  246. H. Zhu and D. B. Bogy. Direct algorithm and its application to slider air-bearing surface optimisation. IEEE Transactions on Magnetics, 38(5), September 2002.

    Google Scholar 

  247. X. Zhu, Y. Huang, and J. Doyle. Genetic algorithms and simulated annealing for robustness analysis. In Proceedings of American Control Conference, volume 6, pages 3756–3760, Albuquerque, NM, June 1997.

    Google Scholar 

  248. J. W. Zwolak, J. J. Tyson, and L. T. Watson. Globally optimised parameters for a model of mitotic control in frog egg extracts. IEE Proceedings on Systems Biology, 152(2):81–92, June 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bates, D.G., Hagström, M. (2007). Concluding Remarks. In: Bates, D., Hagström, M. (eds) Nonlinear Analysis and Synthesis Techniques for Aircraft Control. Lecture Notes in Control and Information Sciences, vol 365. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73719-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73719-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73718-6

  • Online ISBN: 978-3-540-73719-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics