Skip to main content

Classification of Normal and Tumor Tissues Using Geometric Representation of Gene Expression Microarray Data

  • Conference paper
Modeling Decisions for Artificial Intelligence (MDAI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4617))

  • 1542 Accesses

Abstract

Microarray is a fascinating technology that provides us with accurate predictions of the state of biological tissue samples simply based on the expression levels of genes available from it. Of particular interest in the use of microarray technology is the classification of normal and tumor tissues which is vital for accurate diagnosis of the disease of interest. In this paper, we shall make use of geometric representation from graph theory for the classification of normal and tumor tissues of colon and ovary. The accuracy of our geometric representation-based classification algorithm will be shown to be comparable to that of the currently known best classification algorithms for the two datasets. In particular, the presented algorithm will be shown to have the highest classification accuracy when the number of genes used for classification is small.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alizadeh, A., et al.: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000)

    Article  Google Scholar 

  2. Alon, U., et al.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. In: Proc. Nat’l. Acad. Sci. USA, vol. 96, pp. 6745–6750 (1999)

    Google Scholar 

  3. Barnes, E.R.: An algorithm for partitioning the nodes of a graph. SIAM Journal of Algebraic and Discrete Methods 3, 541–550 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barrier, A., et al.: Colon cancer prognosis prediction by gene expression profiling. Oncogene 24, 6155–6164 (2005)

    Article  MathSciNet  Google Scholar 

  5. Dabney, A.: Classification of microarrays to nearest centroids. Bioinformatics 21, 4148–4154 (2005)

    Article  Google Scholar 

  6. Dudoit, S., et al.: Comparison of discriminant methods for the classification of tumors using gene expression data. University of California, Berkeley, Technical Report #576 (2002)

    Google Scholar 

  7. Ernst, J., Bar-Joseph, Z.: STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics 7(191) (2006)

    Google Scholar 

  8. Furey, T., et al.: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16, 904–914 (2000)

    Article  Google Scholar 

  9. Golub, T., et al.: Molecular classification of cancers; class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  10. Guyon, I., et al.: Gene selection for cancer classification using SVM. Mach. Learning 46, 389–422 (2002)

    Article  MATH  Google Scholar 

  11. Hagen, L., Kahng, A.B.: New spectral methods for ratio cut partitioning and clustering. IEEE Trans. Computer-Aided Design 11, 1074–1085 (1992)

    Article  Google Scholar 

  12. Iizuka, N., et al.: Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection. The Lancet 361, 923–929 (2003)

    Article  Google Scholar 

  13. Kaminski, N., Bar-Joseph, Z.: A patient-gene model for temporal expression profiles in clinical studies. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P., Waterman, M. (eds.) RECOMB 2006. LNCS (LNBI), vol. 3909, pp. 69–82. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Kato, T., et al.: Network-based de-noising improves prediction from microarray data. BMC Bioinformatics 7(S4) (2006)

    Google Scholar 

  15. Khan, J., et al.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat. Med. 7, 673–679 (2001)

    Article  Google Scholar 

  16. Kluger, Y., et al.: Spectral biclustering of microarray data: co-clustering genes and conditions. Genome Res. 13, 703–716 (2003)

    Article  Google Scholar 

  17. Lee, J., et al.: An extensive comparison of recent classification tools applied to microarray data. Comput. Stat. Data Anal. 48, 869–885 (2005)

    Article  Google Scholar 

  18. Mohar, M.: The Laplacian spectrum of graphs. In: Graph Theory, Combinatorics, and Applications, pp. 871–898. Wiley, Chichester (1991)

    Google Scholar 

  19. Mukherjee, S., et al.: Support Vector Machine Classfication of Microarray Data. MIT A.I. Memo No. 1677 and C.B.C.L. Paper No. 182 (1998)

    Google Scholar 

  20. Perou, C., et al.: Molecular portraits of human breast tumours. Nature 406, 747–752 (2000)

    Article  Google Scholar 

  21. Petricoin III, E., et al.: Use of proteomic patterns in serum to identify ovarian cancer. The Lancet 359, 572–577 (2002)

    Article  Google Scholar 

  22. Rajagopalan, D.: A comparison of statistical methods for analysis of high density oligonucleotide array data. Bioinformatics 19, 1469–1476 (2003)

    Article  Google Scholar 

  23. Ross, D., et al.: Systematic variation in gene expression patterns in human cancer cell lines. Nat. Genet. 24, 227–235 (2000)

    Article  Google Scholar 

  24. Sotirou, C., et al.: Breast cancer classification and prognosis based on gene expression profiles from a population-based study. In: Proc. Nat’l. Acad. Sci. USA, vol. 100, pp. 10393–10398 (2003)

    Google Scholar 

  25. Tibshirani, R., et al.: Diagonosis of multiple cancer types by shrunken centroids of gene expression. In: Proc. Nat’l. Acad. Sci. USA, vol. 99, pp. 6567–6572 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Vicenç Torra Yasuo Narukawa Yuji Yoshida

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, S., Shin, D. (2007). Classification of Normal and Tumor Tissues Using Geometric Representation of Gene Expression Microarray Data. In: Torra, V., Narukawa, Y., Yoshida, Y. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2007. Lecture Notes in Computer Science(), vol 4617. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73729-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73729-2_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73728-5

  • Online ISBN: 978-3-540-73729-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics