Skip to main content

On Bounds for Diffusion, Discrepancy and Fill Distance Metrics

  • Conference paper
Principal Manifolds for Data Visualization and Dimension Reduction

Part of the book series: Lecture Notes in Computational Science and Enginee ((LNCSE,volume 58))

  • 3995 Accesses

Criteria for optimally discretizing measurable sets in Euclidean space is a difficult and old problem which relates directly to the problem of good numerical integration rules or finding points of low discrepancy. On the other hand, learning meaningful descriptions of a finite number of given points in a measure space is an exploding area of research with applications as diverse as dimension reduction, data analysis, computer vision, critical infrastructure, complex networks, clustering, imaging neural and sensor networks, wireless communications, financial marketing and dynamic programming. The purpose of this paper is to show that a general notion of extremal energy as defined and studied recently by Damelin, Hickernell and Zeng on measurable sets X in Euclidean space, defines a diffusion metric on X which is equivalent to a discrepancy on X and at the same time bounds the fill distance on X for suitable measures with discrete support. The diffusion metric is used to learn via normalized graph Laplacian dimension reduction and the discepancy is used to discretize.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajnok, B., Damelin, S. B., Li, J., and Mullen, G.: A constructive finite field method for scattering points on the surface of a d-dimensional sphere. Comput-ing, 68, 97-109 (2002)

    MATH  MathSciNet  Google Scholar 

  2. Chung F.: Spectral Graph Theory. In: CBNS-AMS, 92. AMS Publications, Providence, RI (1997)

    Google Scholar 

  3. Damelin, S. B. and Grabner, P.: Numerical integration, energy and asymptotic equidistributon on the sphere. Journal of Complexity, 19, 231-246 (2003)

    Article  MathSciNet  Google Scholar 

  4. Damelin, S. B.: Marcinkiewicz-Zygmund inequalities and the Numerical approxi-mation of singular integrals for exponential weights: Methods, Results and Open Problems, some new, some old. Journal of Complexity, 19, 406-415 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. 5. Damelin, S. B., Hero, A., and Wang, S. J.: Kernels, hitting time metrics and diffusion in clustering and data analysis, in preparation.

    Google Scholar 

  6. 6. Damelin, S. B., Hickernell F., and Zeng, X.: On the equivalence of discrepancy and energy on closed subsets of Euclidean space, in preparation.

    Google Scholar 

  7. Damelin, S. B. and Kuijlaars, A.: The support of the extremal measure for mono-mial external fields on [−1, 1] . Trans. Amer. Math. Soc. 351, 4561-4584 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. 8. Damelin, S. B., Levesley, J., and Sun, X.: Energies, Group Invariant Kernels and Numerical Integration on Compact Manifolds. Journal of Complexity, submit-ted.

    Google Scholar 

  9. 9. Damelin, S. B., Levesley, J., and Sun, X.: Energy estimates and the Weyl crite-rion on compact homogeneous manifolds. In: Algorithms for Approximation V. Springer, to appear.

    Google Scholar 

  10. Damelin S. B. and Maymeskul, V.: On point energies, separation radius and mesh norm for s-extremal configurations on compact sets in Rn. Journal of Complexity, 21 (6), 845-863 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. 11. Damelin S. B. and Maymeskul, V.: Minimal discrete energy problems and numerical integration on compact sets in Euclidean spaces. In: Algorithms for Approximation V. Springer, to appear.

    Google Scholar 

  12. 12. Damelin S. B. and Maymeskul, V.: On regularity and dislocation properties of minmial energy configurations on compact sets, submitted.

    Google Scholar 

  13. Du, Q., Faber, V., and Gunzburger, M.: Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev, 41 (4), 637-676 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Helgason, S. Differential Geometry, Lie Groups, and Symmetric Spaces. (Grad-uate Studies in Mathematics. ) American Mathematical Society (2001)

    Google Scholar 

  15. Hickernell, F. J.: Goodness of fit statistics, discrepancies and robust designs. Statist. Probab. Lett. 44 (1), 73-78 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hickernell, F. J.: What affects the accuracy of quasi-Monte Carlo quadrature? In: Niederreiter, H. and Spanier, J. (eds. ) Monte Carlo and Quasi-Monte Carlo Methods. Springer-Verlag, Berlin, 16-55 (2000)

    Google Scholar 

  17. Hickernell, F. J.: A generalized discrepancy and quadrature error bound. Math-ematics of Computation, 67 (221), 299-322 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. 18. Hickernell, F. J.: An algorithm driven approach to error analysis for multidimensional integration, submitted.

    Google Scholar 

  19. Hickernell, F. J.: My dream quadrature rule. J. Complexity, 19, 420-427 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Huffman, W. C. and Pless, V.: Fundamentals of error-correcting codes, Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  21. Johnson, M. E., Moore, L. M., and Ylvisaker, D.: Minimax and maxmin distance designs. J. Statist. Plann. Inference 26, 131-148 (1990)

    Article  MathSciNet  Google Scholar 

  22. Kuipers, L. and Niederreiter, H.: Uniform Distribution of Sequences. Wiley-Interscience, New York (1974)

    MATH  Google Scholar 

  23. Lafon, S. and Coifman, R. R.: Diffusion maps. Applied and Computational Har-monic Analysis, 21, 5-30 (2006)

    MATH  MathSciNet  Google Scholar 

  24. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Meth-ods. Volume 63 of SIAM CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1992)

    Google Scholar 

  25. Lubotzky, A., Phillips, R., and Sarnak, P.: Hecke operators and distributing points on the sphere (I-II). Comm. Pure App. Math. 39-40, 148-186, 401-420 (1986, 1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Damelin, S.B. (2008). On Bounds for Diffusion, Discrepancy and Fill Distance Metrics. In: Gorban, A.N., Kégl, B., Wunsch, D.C., Zinovyev, A.Y. (eds) Principal Manifolds for Data Visualization and Dimension Reduction. Lecture Notes in Computational Science and Enginee, vol 58. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73750-6_11

Download citation

Publish with us

Policies and ethics