Skip to main content

Part of the book series: Genome Mapping and Genomics in Animals ((MAPPANIMAL,volume 3))

From the time of initial domestication of wild birds, poultry have served humans as a source of food and a subject of cultural use, similar to other livestock species. The availability of genomic resources ranges from a fully annotated whole genome sequence for the chicken (Gallus gallus) to highly developed linkage maps in Japanese quail (Coturnix japonica), to large insert libraries and at least some species-specific markers in the turkey (Meleagris gallopavo), domestic duck (Anas platyrhynchos), zebra finch (Taeniopygia guttata), brown kiwi (Apteryx australis), and California condor (Gymnogyps californianus). Genomic resources are very limited in other species of birds. The annotated chicken genome sequence will pave the way for improving traits of economic importance in the chicken, and will serve as a reference sequence in comparative mapping of other domesticated and wild bird species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdrakhmanov I, Lodygin D, Geroth P, Arakawa H, Law A, Plachy J, Korn B, Buerstedde JM (2000) A large database of chicken bursal ESTs as a resource for the analysis of vertebrate gene function. Genome Res 10:2062–2069

    PubMed  CAS  Google Scholar 

  • Abozin II (1885) Chicken breeding: detailed description of various chicken breeds, with the recommendations of care of them, breed improvement by crossbreeding and selection of breeders, pt 2. Moscow, Russia

    Google Scholar 

  • Aerts JA, Veenendaal T, van der Poel JJ, Crooijmans RPMA, Groenen MAM (2005) Chromosomal assignment of chicken clone contigs by extending the consensus linkage map. Anim Genet 36:216–222

    PubMed  CAS  Google Scholar 

  • Afrakhte M, Schultheiss TM (2004) Construction and analysis of a subtracted library and microarray of cDNAs expressed specifically in chicken heart progenitor cells. Dev Dyn 230:290–298

    PubMed  CAS  Google Scholar 

  • Akishinonomiya F, Miyake T, Sumi S, Takada M, Ohno S, Kondo N (1994) One subspecies of the red junglefowl (Gallus gallus gallus) suffices as the matriarchic ancestor of all domestic breeds. Proc Natl Acad Sci USA 91:12505–12509

    Google Scholar 

  • Akishinonomiya F, Miyake T, Takada M, Shingu R, Endo T, Gojobori T, Kondo N, Ohno S (1996) Monophyletic origin and unique dispersal patterns of domestic fowls. Proc Natl Acad Sci USA 93:6792–6795

    Google Scholar 

  • Altukhov Y (ed) (2004) Dynamics of population gene pools under anthropogenic pressures. Nauka, Moscow, Russia

    Google Scholar 

  • Ambady S, Cheng HH, Ponce De Leon FA (2002) Development and mapping of microsatellite markers derived from chicken chromosome-specific libraries. Poult Sci 81:1644–1646

    PubMed  CAS  Google Scholar 

  • Andersson L (2001) Genetic dissection of phenotypic diversity in farm animals. Nat Rev Genet 2:130–138

    PubMed  CAS  Google Scholar 

  • Andreozzi L, Federico C, Motta S, Saccone S, Sazanova AL, Sazanov AA, Smirnov AF, Galkina SA, Lukina NA, Rodi-onov AV, Carels N, Bernardi G (2001) Compositional mapping of chicken chromosomes and identification of the gene-richest regions. Chrom Res 9:521–532

    PubMed  CAS  Google Scholar 

  • Arnold A P, Clayton D (2004) Proposal for construction of a BAC library of the genome of the zebra finch (Taeniopygia guttata). National Human Genome Research Institute, USA. http://www.genome.gov/Pages/Research/Sequencing/BACLibrary/zebraFinch.pdf (accessed August 20, 2008)

  • Backström N, Brandström M, Gustafsson L, Qvarnström A, Cheng H, Ellegren H (2006) Genetic mapping in a natural population of collared flycatchers (Ficedula albicollis): conserved synteny but gene order rearrangements on the avian Z chromosome. Genetics 174:377–386

    PubMed  Google Scholar 

  • Baker CMA (1964) Molecular genetics of avian proteins. III. The egg proteins of an isolated population of Jungle Fowl, Gallus gallus L. Comp Biochem Physiol 12:389–403

    PubMed  CAS  Google Scholar 

  • Baker CMA (1968) Molecular genetics of avian proteins. IX. Interspecific and intraspecific variation of egg white proteins of genus Gallus. Genetics 58:211–226

    PubMed  CAS  Google Scholar 

  • Baker CMA, Manwell C (1972) Molecular genetics of avian proteins. XI. Egg proteins of Gallus gallus, G. sonnerati and hybrids. Anim Blood Groups Biochem Genet 3:101–107

    CAS  Google Scholar 

  • Baker CMA, Manwell C, Jayaprakash N, Francis N (1971) Molecular genetics of avian proteins. X. Egg white protein polymorphism of indigenous Indian chickens. Comp Biochem Physiol B Comp Biochem 40:147–153

    CAS  Google Scholar 

  • Baratti M, Alberti A, Groenen M, Veenendaal T, Fulgheri FD (2001) Polymorphic microsatellites developed by cross-species amplifications in common pheasant breeds. Anim Genet 32:222–225

    PubMed  CAS  Google Scholar 

  • Barloy JJ (1978) Man and Animals. 100 Centuries of Friendship. Gordon and Cremonesi, London, UK

    Google Scholar 

  • Bateson W (1909) Mendel's Principles of Heredity. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Bateson W, Punnett RC (1911) The inheritance of peculiar pigmentation of the Silky fowl. J Genet 1:185–203

    Google Scholar 

  • Bateson W, Saunders ER (1902) Experimental studies in the physiology of heredity. Rep Evol Comm R Soc I:1–160

    Google Scholar 

  • Beaumont C, Roussot O, Feve K, Vignoles F, Leroux S, Pitel F, Faure JM, Mills AD, Guémené D, Sellier N, Mignon- Grasteau S, Le Roy P, Vignal A (2005) A genome scan with AFLP™markers to detect fearfulness-related QTL in Japanese quail. Anim Genet 36:401–407

    PubMed  CAS  Google Scholar 

  • Beebe W (1918–1922) A Monograph of Pheasants, vols I-IV. H.F. and G. Witherby, London, UK

    Google Scholar 

  • Bell DD, Weaver WD Jr (2002) Commercial Chicken Meat and Egg Production, 5th edn. Kluwer, Norwell, USA

    Google Scholar 

  • Bennett MD, Leitch IJ, Price HJ, Johnston JS (2003) Comparisons with Caenorhabditis (˜100 Mb) and Drosophila (˜175 Mb) using flow cytometry show genome size in Ara-bidopsis to be ˜157 Mb and thus ˜25% larger than the Arabidopsis genome initiative estimate of ˜125 Mb. Ann Bot (Lond) 91:547–557

    CAS  Google Scholar 

  • Bennett RM, Ijpelaar ACE (2003) Economics of Livestock Diseases. Department of Agricultural and Food Economics, University of Reading, Reading, UK. http://www.apd.rdg.ac.uk/AgEcon/livestockdisease/index.htm (accessed August 20, 2008)

  • Bermudez-Humaran LG, Garcia-Garcia A, Leal-Garza CH, Riojas-Valdes VM, Jaramillo-Rangel G, Montes-de-Oca-Luna R (2002) Molecular sexing of monomorphic endangered Ara birds. J Exp Zoo 292:677–680

    CAS  Google Scholar 

  • Bitgood JJ, Somes RG Jr (1993) Gene map of the chicken ( Gallus gallus or G. domesticus). In: O'Brien S (ed) Genetic Maps, 6th edn. Cold Spring Harbor Lab Press, Cold Spring Harbor, USA, pp 4332–4342

    Google Scholar 

  • Bliss TW, Dohms JE, Emara MG, Keeler CL Jr (2005) Gene expression profiling of avian macrophage activation. Vet Immunol Immunopathol 105:289–299

    PubMed  CAS  Google Scholar 

  • Bloom SE, Delany ME, Muscarella DE (1993) Constant and variable features of avian chromosomes. In: Etches RJ, Verrinder Gibbins AM (eds) Manipulation of the Avian Genome. CRC Press, Boca Raton, USA, pp 39–59

    Google Scholar 

  • Boardman PE, Sanz-Ezquerro J, Overton IM, Burt DW, Bosch E, Fong WT, Tickle C, Brown WR, Wilson SA, Hubbard SJ(2002) A comprehensive collection of chicken cDNAs. Curr Biol 12:1965–1969

    PubMed  Google Scholar 

  • Bourneuf E, Herault F, Chicault C, Carre W, Assaf S, Monnier A, Mottier S, Lagarrigue S, Douaire M, Mosser J, Diot C (2006) Microarray analysis of differential gene expression in the liver of lean and fat chickens. Gene 372:162–170

    PubMed  CAS  Google Scholar 

  • Brisbin IL (1997) Concerns for the genetic integrity and conservation status of the red junglefowl. SPPA Bull 2:1–2

    Google Scholar 

  • Brothwell D, Brothwell P (1998) Food in Antiquity: A Survey of the Diet of Early Peoples. expanded edn. Johns Hopkins University Press, Baltimore, USA

    Google Scholar 

  • Brown E (1906) Races of Domestic Poultry. Edward Arnold, London, UK

    Google Scholar 

  • Brown E (1929) Poultry Breeding and Production, vols I and II. Ernst Benn Ltd, London, UK

    Google Scholar 

  • Brown WR, Hubbard SJ, Tickle C, Wilson SA (2003) The chicken as a model for large-scale analysis of vertebrate gene function. Nat Rev Genet 4:87–98

    PubMed  CAS  Google Scholar 

  • Buitenhuis AJ, Rodenburg TB, Siwek M, Cornelissen SJB, Nieuwland MGB, Crooijmans RPMA, Groenen MAM, Koene P, Bovenhuis H, van der Poel JJ (2003) Identification of quantitative trait loci for receiving pecks in young and adult laying hens. Poult Sci 82:1661–1667

    PubMed  CAS  Google Scholar 

  • Buitkamp J, Ewald D, Schalkwyk L, Weiher M, Masabanda J, Sazanov A, Lehrach H, Fries R (1998) Construction and characterisation of a gridded chicken cosmid library with four-fold genomic coverage. Anim Genet 29:295–301

    PubMed  CAS  Google Scholar 

  • Bumstead N (1998) Genomic mapping of resistance to Marek's disease. Avian Pathol 27:S78–S81

    CAS  Google Scholar 

  • Bumstead N, Palyga J (1992) A preliminary linkage map of the chicken genome. Genomics 13:690–697

    PubMed  CAS  Google Scholar 

  • Burnside J, Neiman P, Tang J, Basom R, Talbot R, Aronszajn M, Burt D, Delrow J (2005) Development of a cDNA array for chicken gene expression analysis. BMC Genomics 6:13

    PubMed  Google Scholar 

  • Burt DW (1999) Chick. In: Wood R (ed) Genetic Nomenclature Guide. Elsevier, West Sussex, UK, Trends Genet 15(Nov Suppl):S34–S36

    Google Scholar 

  • Burt DW (2002) Origin and evolution of avian microchromo-somes. Cytogenet Genome Res 96:97–112

    PubMed  CAS  Google Scholar 

  • Burt DW (2005) Chicken genome: current status and future opportunities. Genom Res 15:1692–1698

    CAS  Google Scholar 

  • Burt DW, Pourquié O (2003) Chicken genome — science nug-gets to come soon. Science 300:1669

    PubMed  CAS  Google Scholar 

  • Burt DW, Bruley C, Dunn IC, Jones CT, Ramage A, Law AS, Morrice DR, Paton IR, Smith J, Windsor D, Sazanov A, Fries R, Waddington D (1999) The dynamics of chromosome evolution in birds and mammals. Nature 402:411–413

    PubMed  CAS  Google Scholar 

  • Carlborg O, Hocking PM, Burt DW, Haley CS (2004) Simultaneous mapping of epistatic QTL in chickens reveals clusters of QTL pairs with similar genetic effects on growth. Genet Res 83:197–209

    PubMed  CAS  Google Scholar 

  • Carter GF (1971) Pre-Columbian chickens in America. In: Riley CL, Kelly JC, Pennington CW, Rands RL (eds) Man Across the Sea. Problems of Pre-Columbian Contacts. University of Texas Press, Austin, USA, pp 178–218

    Google Scholar 

  • Carter H, Mace AC (1923–1933) The Tomb of Tut-ankh-amen Discovered by the Late Earl of Carnarvon and Howard Carter, 3 vols. Cassell, London, UK

    Google Scholar 

  • Cassar G, Mohammed M, John TM, Gazdzinski P, Etches RJ (1998) Differentiating between parthenogenetic and “positive development” embryos in turkeys by molecular sex-ing. Poult Sci 77:1463–1468

    PubMed  CAS  Google Scholar 

  • Chen X, Agate RJ, Itoh Y, Arnold AP (2005) Sexually dimorphic expression of trkB, a Z-linked gene, in early posthatch zebra finch brain. Proc Natl Acad Sci USA 102:7730–7735

    PubMed  CAS  Google Scholar 

  • Cheng HH, Levin I, Vallejo RL, Khatib H, Dodgson JB, Crit-tenden LB, Hillel J (1995) Development of a genetic map of the chicken with markers of high utility. Poult Sci 74:1855–1874

    PubMed  CAS  Google Scholar 

  • Clayton DF (2004) Songbird genomics: methods, mechanisms, opportunities, and pitfalls. Ann NY Acad Sci 1016:45–60

    PubMed  CAS  Google Scholar 

  • Clayton D, Arnold A, Warren W, Dodgson J (2005) Proposal for construction of a physical map of the genome of the zebra finch (Taeniopygia guttata). University of California, Los Angeles, USA. http://www.physci.ucla.edu/html/ images/Zebra_finch_genome_white_paper.pdf (accessed August 20, 2008)

    Google Scholar 

  • Cogburn LA, Wang X, Carre W, Rejto L, Porter TE, Aggrey SE, Simon J (2003) Systems-wide chicken DNA microarrays, gene expression profiling, and discovery of functional genes. Poult Sci 82:939–951

    PubMed  CAS  Google Scholar 

  • Cole LJ (1930) A triple allelomorph in doves and its interspecific transfer. Anat Rec 47:389 (Aviculture 2:27–30)

    Google Scholar 

  • Crawford RD (1990) Poultry Breeding and Genetics. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  • Crawford RD (1992) A global review of the genetic resources of poultry. In: Management of Global Animal Genetic Resources. FAO Animal Production and Health Paper, No 104, Rome, Italy, pp 205–214

    Google Scholar 

  • Crawford RD (1995) Origin, history, and distribution of commercial poultry. In: Hunton P (ed) Poultry Production. Elsevier, Amsterdam, The Netherlands, pp 1–20

    Google Scholar 

  • Crittenden LB, Provencher L, Santangelo L, Levin I, Abplanalp H, Briles RW, Briles WE, Dodgson JB (1993) Characterization of a Red Jungle Fowl by White Leghorn backcross reference population for molecular mapping of the chicken genome. Poult Sci 72:334–348

    Google Scholar 

  • Crooijmans RPMA, Vrebalov J, Dijkhof RJM, van der Poel JJ, Groenen MAM (2000) Two-dimensional screening of the Wageningen chicken BAC library. Mamm Genom 11:360–363

    CAS  Google Scholar 

  • Darwin C (1868) The Variation of Animals and Plants under Domestication. John Murray, London, UK, pp 273–335

    Google Scholar 

  • Davenport CB (1911) Another case of sex-limited heredity in poultry. Proc Soc Exp Biol Med 9:19–20

    Google Scholar 

  • Davenport CB (1912) Sex-limited inheritance in poultry. J Exp Zool 13:1–26

    Google Scholar 

  • Dawe Y, Kuhnlein U, Zadworny D, Gavora J (1988) DNA fingerprinting: a tool for assessing parentship, strain relationship and genetic variability in poultry. Proc 18th Worlds Poult Congr, Nagoya, Japan, September 4–9, pp 507–508

    Google Scholar 

  • Dawson DA, Burke T, Hansson B, Pandhal J, Hale MC, Hinten GN, Slate J (2006) A predicted microsatellite map of the passerine genome based on chicken-passerine sequence similarity. Mol Ecol 15:1299–1320

    PubMed  CAS  Google Scholar 

  • D'Costa S, Petitte JN (1998) Sex identification of turkey embryos using a multiplex polymerase chain reaction. Poult Sci 77:718–721

    PubMed  Google Scholar 

  • de Boer LEM (1980) Do the chromosomes of the kiwi provide evidence for a monophyletic origin of the ratites? Nature 287:84–85

    PubMed  Google Scholar 

  • Deeb N, Lamont SJ (2003) Use of a novel outbred by inbred F1 cross to detect genetic markers for growth. Anim Genet 34:2051–212

    Google Scholar 

  • de Koning D-J, Haley CS, Windsor D, Hocking PM, Griffin H, Morris A, Vincent J, Burt DW (2004) Segregation of QTL for production traits in commercial meat-type chickens. Genet Res 83:211–220

    PubMed  Google Scholar 

  • Delacour J (1977) The Pheasants of the World, 2nd edn. Spur, Hindhead, Surrey, UK pp 119–136

    Google Scholar 

  • del Hoyo J, Elliott A, Sargatal J (eds) (1992–1996) Handbook of the Birds of the World, vols 1–3. Lynx Edicions, Barcelona, Spain

    Google Scholar 

  • Dembeck H (1965) Animals and Men. The American Museum of Natural History. The Natural History Press, Garden City USA

    Google Scholar 

  • Derjusheva S, Kurganova A, Habermann F, Gaginskaya E (2004) High chromosome conservation detected by comparative chromosome painting in chicken, pigeon and passerine birds. Chrom Res 12:715–723

    PubMed  CAS  Google Scholar 

  • Dixon ES (1848) Ornamental and Domestic Poultry: Their History and Management, 1st edn. Gardener's Chronicle, London, UK

    Google Scholar 

  • Dodgson JB (2003) Chicken genome sequence: a centennial gift to poultry genetics. Cytogenet Genome Res 102:291–296

    PubMed  CAS  Google Scholar 

  • Dodgson JB, Romanov MN (2004) Use of chicken models for the analysis of human disease. In: Dracopoli NC, Haines JL, Korf BR, Moir DT, Morton CC, Seidman CE, Seidman JG, Smith DR (eds) Current Protocols in Human Genetics. Wiley, Hoboken, USA, Unit 15.5, pp 15.5.1–15.5.11

    Google Scholar 

  • Dunn IC, Sharp PJ, Paton IR, Burt DW (1999) Mapping of the gene responsible for henny feathering (CYP19/aromatase) to chicken chromosome E29C09W09. Proc Poult Genet Symp, Mariensee, Germany, October 6–8, 1999, p 114

    Google Scholar 

  • Dunn LC (1928) The genetics of the domestic fowl. J Hered 19:511–519

    Google Scholar 

  • Dunn LC (1929) The genetics of the domestic fowl: Memoirs of the Anikowo Genetical Station, 1926. II. The genetics of leg feathering. J Hered 20:111–118

    Google Scholar 

  • Dunn LC, Jull MA (1927) On the inheritance of some characteristics of the Silky fowl. J Genet 19:27–63

    Google Scholar 

  • Dunn LC, Landauer W (1930) Further data on a case of auto-somal linkage in the domestic fowl. J Genet 22:95–101

    Google Scholar 

  • Dunnington EA, Stallard LC, Hillel J, Siegel PB (1994) Genetic diversity among commercial chicken populations estimated from DNA fingerprints. Poult Sci 73:1218–1225

    PubMed  CAS  Google Scholar 

  • Durham FM, Marryat DCE (1908) Note on the inheritance of sex in canaries. Rep Evol Comm R Soc IV:57–60

    Google Scholar 

  • Edwards S V, Gasper J, March M (1998) Genomics and polymorphism of Agph-DAB1, an Mhc class II B gene in red-winged blackbirds (Agelaius phoeniceus). Mol Biol Evol 15:236–250

    PubMed  CAS  Google Scholar 

  • El Bassam N (1998) Sustainable development in agriculture – global key issues. Landbauforsch Völkenrode 48:1–11

    CAS  Google Scholar 

  • Ellegren H (1996) First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds. Proc Roy Soc Lond B Biol Sci 263:1635–1641

    CAS  Google Scholar 

  • Ellegren H, Fridolfsson AK (1997) Male-driven evolution of DNA sequences in birds. Nat Genet 17:182–184

    PubMed  CAS  Google Scholar 

  • Ellestad LE, Carre W, Muchow M, Jenkins SA, Wang X, Cogburn LA, Porter TE (2006) Gene expression profiling during cellular differentiation in the embryonic pituitary gland using cDNA microarrays. Physiol Genom 25:414–425

    CAS  Google Scholar 

  • Erbil C, Niessing J (1984) Chromosomal arrangement of the duck α-globin genes and primary structure of the embryonic α-globin gene π. Gene 32:161–170

    PubMed  CAS  Google Scholar 

  • Etches RJ, Hawes RO (1973) A summary of linkage relationships and a revised linkage map of the chicken. Can J Genet Cytol 15:553–570

    Google Scholar 

  • Ewins R (1995) Proto-Polynesian art? The cliff paintings of Vatulele, Fiji. J Polyn Soc 103:23–74

    Google Scholar 

  • FAO (1997–2004) Secondary Guidelines for Development of Na-tional Farm Animal Genetic Resources Management Plans. Measurement of Domestic Animal Diversity (MoDAD): Recommended Microsatellite Markers. New Microsatellite Marker Sets — Recommendation of joint ISAG/FAO Standing Committee (to be presented at ISAG 2004). Initiative for Domestic Animal Diversity, FAO, Rome, Italy

    Google Scholar 

  • FAOSTAT (2006) FAOSTAT Database Collections. Food and Agriculture Organization of the United Nations, Rome, Italy. http://faostat.fao.org/ (accessed August 25, 2006)

  • Fillon V, Morisson M, Zoorob R, Auffray C, Douaire M, Gellin J, Vignal A (1998) Identification of 16 chicken micro-chromosomes by molecular markers using two-colour fluorescence in situ hybridization (FISH). Chrom Res 6:307–313

    PubMed  CAS  Google Scholar 

  • Fridolfsson AK, Ellegren H (1999) A simple and universal method for molecular sexing of non-ratite birds. J Avian Biol 30:116–121

    Google Scholar 

  • Finsterbusch CA (1929) Cock Fighting all over the World. Grit and Steel, Gaffney, UK

    Google Scholar 

  • Goodale HD (1917) Crossing-over in the sex chromosome of the male fowl. Science 46:213

    PubMed  Google Scholar 

  • Gregory TR (2006) Animal Genome Size Database. University of Guelph, Canada. http://www.genomesize.com/ (accessed August 25, 2006)

  • Griffiths R, Korn RM (1997) A CHD1 gene is Z chromosome linked in the chicken Gallus domesticus. Gene 197:225–229

    PubMed  CAS  Google Scholar 

  • Griffiths R, Daan S, Dijkstra C (1996) Sex identification in birds using two CHD genes. Proc Roy Soc Lond B Biol Sci 263:1251–1256

    CAS  Google Scholar 

  • Griffiths R, Double MC, Orr K, Dawson RJ (1998) A DNA test to sex most birds. Mol Ecol 7:1071–1075

    PubMed  CAS  Google Scholar 

  • Grisart B, Coppieters W, Farnir F, Karim L, Ford C, Berzi P, Cambisano N, Mni M, Reid S, Simon P, Spelman R, Georges M, Snell R (2002) Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genom Res 12:222–231

    CAS  Google Scholar 

  • Groenen MAM, Crooijmans RPMA, Veenendaal A, van Kaam JBCHM, Vereijken ALJ, van Arendonk JAM, van der Poel JJ (1997) QTL mapping in chicken using a three generation full sib family structure of an extreme broiler × broiler cross. Anim Biotechnol 8:41–46

    Google Scholar 

  • Groenen MAM, Crooijmans RPMA, Veenendaal A, Cheng HH, Siwek M, van der Poel JJ (1998) A comprehensive micro-satellite linkage map of the chicken genome. Genomics 49:265–274

    PubMed  CAS  Google Scholar 

  • Groenen MAM, Cheng HH, Bumstead N, Benkel BF, Briles WE, Burke T, Burt DW, Crittenden LB, Dodgson J, Hillel J, Lamont S, Ponce de Leon FA, Soller M, Takahashi H, Vignal A (2000) A consensus linkage map of the chicken genome. Genom Res 10:137–147

    CAS  Google Scholar 

  • Guggenheim JA, Erichsen JT, Hocking PM, Wright NF, Black R (2002) Similar genetic susceptibility to form- deprivation myopia in three strains of chicken. Vision Res 42:2747–2756

    PubMed  Google Scholar 

  • Guillier-Gensik Z, Bernheim A, Coullin P (1999) Generation of whole-chromosome painting probes specific to each chicken macrochromosomes. Cytogenet Cell Genet 87:282–285

    Google Scholar 

  • Gunnarsson U, Hellström AR, Tixier-Boichard M, Minvielle F, Bed'hom B, Ito S, Jensen P, Rattink A, Vereijken A, Andersson L (2007) Mutations in SLC45A2 cause plumage color variation in chicken and Japanese quail. Genetics 175:867–877

    PubMed  CAS  Google Scholar 

  • Gunski RJ, Giannoni ML (1998) Nucleolar organizer regions and a new chromosome number for Rhea americana (Aves: Rheiformes). Genet Mol Biol 21:207–210

    Google Scholar 

  • Guttenbach M, Nanda I, Feichtinger W, Masabanda JS, Griffin DK, Schmid M (2003) Comparative chromosome painting of chicken autosomal paints 1–9 in nine different bird species. Cytogenet Genome Res 103:173–184

    PubMed  CAS  Google Scholar 

  • Haberfeld A, Dunnington EA, Siegel PB (1992) Genetic distances estimated from DNA fingerprints in crosses of White Plymouth Rock chickens. Anim Genet 23:165–173

    Google Scholar 

  • Habermann F, Cremer M, Walter J, Kreth G, von Hase J, Bauer K, Wienberg J, Cremer C, Cremer T, Solovei I (2001) Arrangement of macro- and microchromosomes in chicken cells. Chrom Res 9:569–584

    PubMed  CAS  Google Scholar 

  • Hagedoorn AL (1909) Mendelian inheritance of sex. Wilhelm Roux' Arch Entwicklungsmech Organ 28:1–34

    Google Scholar 

  • Hale ML, Petrie M, Wolff K (2004) Polymorphic microsat-ellite loci in peafowl (Pavo cristatus). Mol Ecol Notes 4:528–530

    CAS  Google Scholar 

  • Haldane JBS (1921) Linkage in poultry. Science 54:663

    PubMed  Google Scholar 

  • Hanotte O, Burke T, Armour JA, Jeffreys AJ (1991) Hypervari-able minisatellite DNA sequences in the Indian peafowl Pavo cristatus. Genomics 9:587–597

    PubMed  CAS  Google Scholar 

  • Hansson B, Åkesson M, Slate J, Pemberton JM (2005) Linkage mapping reveals sex-dimorphic map distances in a passerine bird. Proc Biol Sci 272:2289–2298

    PubMed  CAS  Google Scholar 

  • Hertwig P (1933) Geschlechtsgebundene und autosomale Kop-pelungen bei Hühnern. Verh Dtsch Zool Ges 35:112–118

    Google Scholar 

  • Hillel J, Groenen MAM, Tixier-Boichard M, Korol AB, David L, Kirzhner VM, Burke T, Barre-Dirie A, Crooijmans RPMA, Elo K, Feldman MW, Freidlin PJ, Mäki-Tanila A, Oortwijn M, Thomson P, Vignal A, Wimmers K, Weigend S (2003) Biodiversity of 52 chicken populations assessed by micro-satellite typing of DNA pools. Genet Sel Evol 35:533–557

    PubMed  CAS  Google Scholar 

  • Ho PT (1977) The indigenous origin of Chinese agriculture. In: Reed CA (ed) Origins of Agriculture. Mouton, The Hague, The Netherlands, pp 413–484

    Google Scholar 

  • Hollander WF (1970) Sex-linked chocolate coloration in the Muscovy Duck. Poult Sci 49:594–596

    PubMed  CAS  Google Scholar 

  • Hollander WF (1990) ABC's of Poultry Genetics. Stromberg, Pine River, USA

    Google Scholar 

  • Hollander WF, Miller WJ (1982) A new sex-linked mutation, “web-lethal” from Racing Homers. Am Racing Pigeon News 98:50–51

    Google Scholar 

  • Hori T, Asakawa S, Itoh Y, Shimizu N, Mizuno S (2000) Wpkci, encoding an altered form of PKCI, is conserved widely on the avian W chromosome and expressed in early female embryos: implication of its role in female sex determination. Mol Biol Cell 11:3645–3660

    PubMed  CAS  Google Scholar 

  • Huang Y, Tu J, Cheng X, Tang B, Hu X, Liu Z, Feng J, Lou Y, Lin L, Xu K, Zhao Y, Li N (2005) Characterization of 35 novel microsatellite DNA markers from the duck (Anas platy-rhynchos) genome and cross-amplification in other birds. Genet Sel Evol 37:455–472

    PubMed  CAS  Google Scholar 

  • Huang YQ, Deng XM, Du ZQ, Qiu X, Du X, Chen W, Morisson M, Leroux S, Ponce de Leon FA, Da Y, Li N (2006a) Single nucleotide polymorphisms in the chicken Lmbr1 gene are associated with chicken polydactyly. Gene 374:10–18

    CAS  Google Scholar 

  • Huang Y, Zhao Y, Haley CS, Hu S, Hao J, Wu C, Li N (2006b) A genetic and cytogenetic map for the duck (Anas platy-rhynchos). Genetics 173:287–296

    CAS  Google Scholar 

  • Huang Y, Haley CS, Wu F, Hu S, Hao J, Wu C, Li N (2007) Genetic mapping of quantitative trait loci affecting carcass and meat quality traits in Beijing ducks (Anas platyrhynchos). Anim Genet 38:114–119.

    PubMed  CAS  Google Scholar 

  • Hutt FB (1933) Genetics of the fowl. II. A four-gene autosomal linkage group. Genetics 18:82–94

    PubMed  CAS  Google Scholar 

  • Hutt FB (1936) Genetics of the fowl. VI. A tentative chromosome map. In: Ag V (ed) Neue Forschungen in Tierzucht und Abstammungslehre (Festschrift zum 60. Geburtstag von Prof. Dr. J. Ulrich Duerst). Verbandsdruckerei, Bern, Switzerland, pp 105–112

    Google Scholar 

  • Hutt FB (1949) Genetics of the Fowl. McGraw-Hill, New York, USA

    Google Scholar 

  • Hutt FB (1960) New loci in the sex chromosome of the fowl. Heredity 15:97–110

    Google Scholar 

  • Hutt FB (1964) Animal Genetics. Ronald, New York, USA

    Google Scholar 

  • Hutt FB, Lamoreux WF (1940) Genetics of the fowl. 11. A linkage map for six chromosomes. J Hered 31:231–235

    Google Scholar 

  • Hyams E (1972) Animals in the Service of Man: 10000 Years of Domestication. J.M. Dent and Sons, London, UK

    Google Scholar 

  • Ikeobi CO, Woolliams JA, Morrice DR, Law A, Windsor D, Burt DW, Hocking PM (2002) Quantitative trait loci affecting fatness in the chicken. Anim Genet 33:428–435

    PubMed  CAS  Google Scholar 

  • International Chicken Genome Sequencing Consortium (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–716

    Google Scholar 

  • International Chicken Polymorphism Map Consortium (2004) A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature 432:717–722

    Google Scholar 

  • Itoh Y, Arnold AP (2005) Chromosomal polymorphism and comparative painting analysis in the zebra finch. Chromosome Res 13:47–56

    PubMed  CAS  Google Scholar 

  • Itoh Y, Mizuno S (2002) Molecular and cytological characterization of SspI-family repetitive sequence on the chicken W chromosome. Chromosome Res 10:499–511

    PubMed  CAS  Google Scholar 

  • Itoh Y, Kampf K, Arnold AP (2006) Comparison of the chicken and zebra finch Z chromosomes shows evolutionary rearrangements. Chromosome Res 14:805–815

    PubMed  CAS  Google Scholar 

  • Ivanov MF (1924) Poultry Breeds. Ekonomicheskaya zhizn', Moscow, USSR

    Google Scholar 

  • Jennen DGJ, Vereijken ALJ, Bovenhuis H, Crooijmans RPMA, Veenendaal A, van der Poel JJ, Groenen MAM (2004) Detection and localization of quantitative trait loci affecting fatness in broilers. Poult Sci 83:295–301

    PubMed  CAS  Google Scholar 

  • Jensen P (2005) Genomics: the chicken genome sequence. Heredity 94:567–568

    PubMed  CAS  Google Scholar 

  • Johnsgard PA (1999) The Pheasants of the World; Biology and Natural History, 2nd edn. Smithsonian Institution Press, Washington, DC, USA

    Google Scholar 

  • Jull MA (1930) The association of comb and crest characters in the domestic fowl. J Hered 21:21–28

    Google Scholar 

  • Kadi F, Mouchiroud D, Sabeur G, Bernardi G (1993) The compositional patterns of the avian genomes and their evolutionary implications. J Mol Evol 37:544–551

    CAS  Google Scholar 

  • Kagami H, Nakamura H, Tomita T (1990) Sex identification in chickens by means of the presence of the W chromosome specific repetitive DNA units. Jap Poult Sci 27:379–384

    CAS  Google Scholar 

  • Kahn NW, Quinn TW (1999) Male-driven evolution among Eoaves? A test of the replicative division hypothesis in a heterogametic female (ZW) system. J Mol Evol 49:750–759

    PubMed  CAS  Google Scholar 

  • Kahn NW, St John J, Quinn TW (1998) Chromosome-specific intron size differences in the avian CHD gene provide an efficient method for sex identification in birds. Auk 115:1074–1078

    Google Scholar 

  • Kaiser MG, Deeb N, Lamont SJ (2002) Microsatellite markers linked to Salmonella enterica serovar enteritidis vaccine response in young F1 broiler-cross chicks. Poult Sci 81:193–201

    PubMed  CAS  Google Scholar 

  • Kamara D, Geng T, Xu J, Guynn S, Hopwood K, Smith EJ (2007) Isolation and characterization of microsatellite markers from the budgerigar, Melopsittacus undulatus. Mol Ecol Notes 7:507–509

    CAS  Google Scholar 

  • Kameda K, Goodridge AG (1991) Isolation and partial characterization of the gene for goose fatty acid synthase. J Biol Chem 266:419–426

    PubMed  CAS  Google Scholar 

  • Kasai F, Garcia C, Arruga MV, Ferguson-Smith MA (2003) Chromosome homology between chicken (Gallus gallus domesticus) and the red-legged partridge (Alectoris rufa); evidence of the occurrence of a neocentromere during evolution. Cytogenet Genome Res 102:326–330

    PubMed  CAS  Google Scholar 

  • Kato J, Hattori T, Ohba S, Tamaki Y, Yamada N, Taguchi T, Ogihara J, Ohya K, Itoh Y, Hori T, Asakawa S, Shimizu N, Mizuno S (2002) Efficient selection of genomic clones from a female chicken bacterial artificial chromosome library by four-dimensional polymerase chain reactions. Poult Sci 81:1501–1508

    PubMed  CAS  Google Scholar 

  • Kayang BB, Inoue-Murayama M, Hoshi T, Matsuo K, Takahashi H, Minezawa M, Mizutani M, Ito S (2002) Microsatellite loci in Japanese quail and cross-species amplification in chicken and guinea fowl. Genet Sel Evol 34:233–253

    PubMed  CAS  Google Scholar 

  • Kayang BB, Vignal A, Inoue-Murayama M, Miwa M, Monvoi-sin JL, Ito S, Minvielle F (2004) A first-generation micro- satellite linkage map of the Japanese quail. Anim Genet 35:195–200

    PubMed  CAS  Google Scholar 

  • Kayang BB, Fillon V, Inoue-Murayama M, Miwa M, Leroux S, Feve K, Monvoisin JL, Pitel F, Vignoles M, Mouilhayrat C, Beaumont C, Ito S, Minvielle F, Vignal A (2006) Integrated maps in quail (Coturnix japonica) confirm the high degree of synteny conservation with chicken (Gallus gallus) despite 35 million years of divergence. BMC Genomics 7:101

    PubMed  Google Scholar 

  • Kear J (1975) How wildfowl could improve our domestic breeds. In: Waterfowl Yearbook. Buyer's Guide 1975–1976, pp 37–41

    Google Scholar 

  • Keeton GW, Muir WM, Aggrey SE (eds) (2003) Poultry Genetics, Breeding and Biotechnology. CABI, Oxon, UK

    Google Scholar 

  • Kellner WA, Sullivan RT, Carlson BH, Thomas JW (2005) Uprobe: a genome-wide universal probe resource for comparative physical mapping in vertebrates. Genome Res 15:166–173

    PubMed  CAS  Google Scholar 

  • Kerje S, Lind J, Schütz K, Jensen P, Andersson L (2003) Melano-cortin 1-receptor (MC1R) mutations are associated with plumage colour in chicken. Anim Genet 34:264–274

    PubMed  CAS  Google Scholar 

  • Kikuchi S, Fujima D, Sasazaki S, Tsuji S, Mizutani M, Fujiwara A, Mannen H (2005) Construction of a genetic linkage map of Japanese quail (Coturnix japonica) based on AFLP and microsatellite markers. Anim Genet 36:227–231

    PubMed  CAS  Google Scholar 

  • Kogan ZM (1979) Exterior and Interior Characters in Chickens (Genetics and Economical Importance). Nauka, Novosibirsk, USSR

    Google Scholar 

  • Lacson JM, Morizot DC (1988) Confirmation of avian sex- chromosome linkage of liver cytosolic aconitase (ACO1). Cytogenet Cell Genet 48:244–245

    PubMed  CAS  Google Scholar 

  • Lamont SJ, Lakshmanan N, Plotsky Y, Kaiser MG, Kuhn M, Arthur JA, Beck NJ, O'Sullivan NP (1996) Genetic markers linked to quantitative traits in poultry. Anim Genet 27:1–8

    PubMed  CAS  Google Scholar 

  • Lancaster FM (1977) Sex-linkage and autosexing in waterfowl. Bull Nat Inst Poult Husbandry, Newport, UK, No 1

    Google Scholar 

  • Landauer W (1931) The linkage relationships of the autosomal genes for Creeper and Rose comb in the fowl. Anat Rec 51:123

    Google Scholar 

  • Lee EJ, Mannen H, Mizutani M, Tsuji S (2000) Genetic analysis of chicken lines by amplified fragment length polymorphism (AFLP). Anim Sci J 71:231–238

    Google Scholar 

  • Lee EJ, Yoshizawa K, Mannen H, Kikuchi H, Kikuchi T, Mizutani M, Tsuji S (2002) Localization of the muscular dystrophy AM locus using a chicken linkage map constructed with the Kobe University resource family. Anim Genet 33:42–48

    PubMed  CAS  Google Scholar 

  • Lee MK, Ren CW, Yan B, Cox B, Zhang HB, Romanov MN, Sizemore FG, Suchyta SP, Peters E, Dodgson JB (2003) Construction and characterization of three complementary BAC libraries for analysis of the chicken genome. Anim Genet 34:151–152

    PubMed  CAS  Google Scholar 

  • Li X, Wistow GJ, Piatigorsky J (1995) Linkage and expression of the argininosuccinate lyase/delta-crystallin genes of the duck: insertion of a CR1 element in the intergenic spacer. Biochim Biophys Acta 1261:25–34

    PubMed  Google Scholar 

  • Lin FK, Paddock GV (1984) Characterization of duck genome fragments containing beta and epsilon globin genes. Gene 31:59–64

    PubMed  CAS  Google Scholar 

  • Lipkin E, Fulton J, Cheng H, Yonash N, Soller M (2002) Quantitative trait locus mapping in chickens by selective DNA pooling with dinucleotide microsatellite markers by using purified DNA and fresh or frozen red blood cells as applied to marker-assisted selection. Poult Sci 81: 283–292

    PubMed  CAS  Google Scholar 

  • Liu HC, Kung HJ, Fulton JE, Morgan RW, Cheng HH (2001) Growth hormone interacts with the Marek's disease virus SORF2 protein and is associated with disease resistance in chicken. Proc Natl Acad Sci USA 98:9203–9208

    PubMed  CAS  Google Scholar 

  • Liu HC, Niikura M, Fulton J, Cheng HH (2003a) Identification of chicken stem lymphocyte antigen 6 complex, locus E (LY6E, alias SCA2) as a putative Marek's disease resistance gene via a virus-host protein interaction screen. CytogenetGenome Res 102:304–308

    CAS  Google Scholar 

  • Liu W, Liu Z, Hu X, Zhang Y, Yuan J, Zhao R, Li Z, Xu W, Gao Y, Deng X, Li N (2003b) Construction and characterization of a novel 13.34-fold chicken bacterial artificial chromosome library. Anim Biotechnol 14:145–153

    CAS  Google Scholar 

  • Liu Y P, Wu GS, Ya o YG, Miao Y W, Luikart G, Baig M, Beja-Pereira A, Ding ZL, Palanichamy MG, Zhang YP (2006) Multiple maternal origins of chickens: out of the Asian jungles. Mol Phylogenet Evol 38:12–19

    PubMed  CAS  Google Scholar 

  • Lock RH (1906) Recent progress in the study of variation, heredity, and evolution. E.P. Dutton, New York, USA

    Google Scholar 

  • Longmire JL, Hahn DC, Roach JL (1999) Low abundance of microsatellite repeats in the genome of the brown-headed cowbird (Molothrus ater). J Hered 90:574–578

    PubMed  CAS  Google Scholar 

  • Luo M, Yu Y, Kim HR, Kudrna D, Itoh Y, Agate RJ, Melamed E, Goicoechea JL, Talag J, Mueller C, Wang W, Currie J, Sisn-eros NB, Wing RA, Arnold AP (2006) Utilization of a zebra finch BAC library to determine the structure of an avian androgen receptor genomic region. Genomics 87:181–190. Erratum in: Genomics 87:678–679

    PubMed  CAS  Google Scholar 

  • Maak S, Wimmers K, Weigend S, Neumann K (2003) Isolation and characterization of 18 microsatellites in the Peking duck (Anas platyrhynchos) and their application in other waterfowl species. Mol Ecol Notes 3:224–227

    CAS  Google Scholar 

  • Mannen H, Murata K, Kikuchi S, Fujima D, Sasazaki S, Fujiwara A, Tsuji S (2005) Development and mapping of microsatellite markers derived from cDNA in Japanese quail (Coturnix japonica). J Poult Sci 42:263–271

    CAS  Google Scholar 

  • Masabanda JS, Burt DW, O'Brien PCM, Vignal A, Fillon V, Walsh PS, Cox H, Tempest HG, Smith J, Habermann F, Schmid M, Matsuda Y, Ferguson-Smith MA, Crooijmans RPMA, Groenen MAM, Griffin DK (2004) Molecular cytogenetic definition of the chicken genome: the first complete avian karyotype. Genetics 166:1367–1373

    PubMed  CAS  Google Scholar 

  • Mason IL (ed) (1984) Evolution of Domesticated Animals. Longmann, New York, USA

    Google Scholar 

  • McElroy J P, Dekkers JC, Fulton JE, O'Sullivan N P, Soller M, Lipkin E, Zhang W, Koehler KJ, Lamont SJ, Cheng HH (2005) Micro-satellite markers associated with resistance to Marek's disease in commercial layer chickens. Poult Sci 84:1678–1688

    PubMed  CAS  Google Scholar 

  • Meng A, Gong G, Chen D, Zhang H, Qi S, Tang H, Gao Z (1996) DNA fingerprint variability within and among parental lines and its correlation with performance of F1 laying hens. Theor Appl Genet 92:769–776

    Google Scholar 

  • Mesa CM, Thulien KJ, Moon DA, Veniamin SM, Magor KE (2004) The dominant MHC class I gene is adjacent to the polymorphic TAP2 gene in the duck, Anas platyrhynchos. Immunogenetics 56:192–203

    PubMed  CAS  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked seg-regant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    PubMed  CAS  Google Scholar 

  • Millar CD, Lambert DM, Anderson S, Halverson JL (1996) Molecular sexing of the communally breeding pukeko: an important ecological tool. Mol Ecol 5:289–293

    PubMed  CAS  Google Scholar 

  • Miller WJ (1964) First linkage of a species antigen in the genus Streptopelia. Science 143:1179–1180

    PubMed  CAS  Google Scholar 

  • Miller WJ (1992) Color mutants in zebra finches, Poephila gut- tata. Friends'N Feathers, Mid-America Cage Bird Society, Des Moines, USA, Oct Issue, pp 3–7

    Google Scholar 

  • Miller WJ, Hollander WF (1978) The quest for linkages. Pigeon Sci Genet Newsl 8:13–14

    Google Scholar 

  • Miller WJ, Webber JL (1969) A new species-antigen in doves and its linkage with the species-albumin type. Genetics (Suppl):s40–s41

    Google Scholar 

  • Minvielle F, Ito S, Inoue-Murayama M, Mizutani M, Wakasugi N (2000) Genetic analyses of plumage color mutations on the Z chromosome of Japanese quail. J Hered 91: 499–501

    PubMed  CAS  Google Scholar 

  • Minvielle F, Kayang BB, Inoue-Murayama M, Miwa M, Vignal A, Gourichon D, Neau A, Monvoisin JL, Ito S (2005) Microsat-ellite mapping of QTL affecting growth, feed consumption, egg production, tonic immobility and body temperature of Japanese quail. BMC Genomics 6:87

    PubMed  Google Scholar 

  • Miwa M, Inoue-Murayama M, Kayang BB, Minvielle F, Mon-voisin JL, Takahashi H, Ito S (2005) Mapping of plumage colour and blood protein loci on the microsatellite linkage map of the Japanese quail. Anim Genet 36:396–400

    PubMed  CAS  Google Scholar 

  • Miwa M, Inoue-Murayama M, Kobayashi N, Kayang BB, Mizu-tani M, Takahashi H, Ito S (2006) Mapping of panda plumage color locus on the microsatellite linkage map of the Japanese quail. BMC Genet 7:2

    PubMed  Google Scholar 

  • Miwa M, Inoue-Murayama M, Aoki H, Kunisada T, Hira-gaki T, Mizutani M, Takahashi H, Ito S (2007) Endothe- lin receptor B2 (EDNRB2) is associated with the panda plumage colour mutation in Japanese quail. Anim Genet 38:103–108

    PubMed  CAS  Google Scholar 

  • Mizuno S, Macgregor H (1998) The ZW lampbrush chromosomes of birds: a unique opportunity to look at the molecular cytogenetics of sex chromosomes. Cytogenet Cell Genet 80:149–157

    PubMed  CAS  Google Scholar 

  • Moiseyeva IG (1998) Ancient evidence for the origin and distribution of domestic fowl. Proc 10th Eur Conf “The Poultry Industry Towards the 21st Century”, Jerusalem, Israel, June 21–26, 1998, vol I, pp 244–245

    Google Scholar 

  • Moiseyeva IG, Lisichkina MG (1996) Origin and evolution of the domestic fowl. Priroda 5:88–96

    Google Scholar 

  • Moiseyeva IG, Volokhovich VA (1987) Variation of qualitative traits of chicken exterior. In: Selection and Technological Processes in Poultry Industry. Stiintsa, Chisinau, USSR, pp 70–74

    Google Scholar 

  • Moiseyeva IG, Semyenova SK, Bannikova LV, Filippova ND (1994) Genetic structure and origin of an old Russian Orloff chicken breed. Genetika 30:681–694

    Google Scholar 

  • Moiseyeva I, Romanov M, Pigaryev N (2000) Obituary: sergey petrov. Worlds Poult Sci J 56:437–438

    Google Scholar 

  • Moiseyeva IG, Romanov MN, Nikiforov AA, Sevastyanova AA, Semyenova SK (2003) Evolutionary relationships of Red Jungle Fowl and chicken breeds. Genet Sel Evol 35:403–423

    PubMed  Google Scholar 

  • Moon DA, Magor KE (2004) Construction and characterization of a fosmid library for comparative analysis of the duck genome. Anim Genet 35:417–418

    PubMed  CAS  Google Scholar 

  • Morgan TH (1910) The method of inheritance of two sex limited characters in the same animal. Proc Soc Exp Biol Med 8:17–19

    Google Scholar 

  • Morgan TH (1911) An attempt to analyze the constitution of the chromosomes on the basis of sex-limited inheritance in Drosophila. J Exp Zool 11:365–412

    Google Scholar 

  • Morgan TH, Goodale HD (1912) Sex-linked inheritance in poultry. Ann N Y Acad Sci 22:113–133

    Google Scholar 

  • Morisson M, Lemiere A, Bosc S, Galan M, Plisson-Petit F, Pin-ton P, Delcros C, Feve K, Pitel F, Fillon V, Yerle M, Vignal A (2002) ChickRH: a chicken whole-genome radiation hybrid panel. Genet Sel Evol 34:521–533

    PubMed  CAS  Google Scholar 

  • Nakamura D, Tiersch TR, Douglass M, Chandler RW (1990) Rapid identification of sex in birds by flow cytometry. Cytogenet Cell Genet 53:201–205

    PubMed  CAS  Google Scholar 

  • Nanda I, Schmid M (2002) Conservation of avian Z chromosomes as revealed by comparative mapping of the Z-linked aldolase B gene. Cytogenet Genome Res 96:176–178

    PubMed  CAS  Google Scholar 

  • Nanda I, Sick C, Munster U, Kaspers B, Schartl M, Staeheli P, Schmid M (1998) Sex chromosome linkage of chicken and duck type I interferon genes: further evidence of evolutionary conservation of the Z chromosome in birds. Chromosoma 107:204–210

    PubMed  CAS  Google Scholar 

  • Nanda I, Zend-Ajusch E, Shan Z, Grutzner F, Schartl M, Burt DW, Koehler M, Fowler VM, Goodwin G, Schneider WJ, Mizuno S, Dechant G, Haaf T, Schmid M (2000) Conserved syn-teny between the chicken Z sex chromosome and human chromosome 9 includes the male regulatory gene DMRT1: a comparative (re)view on avian sex determination. Cytogenet Cell Genet 89:67–78

    PubMed  CAS  Google Scholar 

  • Nefedov M, Zhu B, Thorsen J, Shu CL, Cao Q, Osoegawa K, de Jong P (2003) New chicken, turkey, salmon, bovine, porcine and sheep genomic BAC libraries to complement world wide effort to map farm animals genomes. Proc Plant Anim Genome XI Int Conf, San Diego, USA, January 11–15, 2003, p 96, Abstr P87

    Google Scholar 

  • Niessing J, Erbil C, Neubauer V (1982) The isolation and partial characterization of linked αA- and αD-globin genes from a duck DNA recombinant library. Gene 18:187–191

    PubMed  CAS  Google Scholar 

  • Nishibori M, Shimogiri T, Hayashi T, Yasue H (2005) Molecular evidence for hybridization of species in the genus Gallus except for Gallus varius. Anim Genet 36:367–375

    PubMed  CAS  Google Scholar 

  • Nishida T, Hayashi Y, Hashiguchi T, Mansjoer SS (1983) Ecological and morphological studies on the jungle fowl in Indonesia. Rep Soc Res Native Livest 10:155–170

    Google Scholar 

  • Nishida T, Hayashi Y, Fujioka T, Tsugiyama I, Mochizuki K (1985a) Osteometrical studies on the phylogenetic- relationships of Japanese native fowls. Jap J Vet Sci 47:25–37

    CAS  Google Scholar 

  • Nishida T, Hayashi Y, Hashiguchi T (1985b) Somatometrical studies on the morphological relationships of Japanese native fowls. Jap J Zootech Sci 56:645–657

    Google Scholar 

  • Nishida-Umehara C, Fujiwara A, Ogawa A, Mizuno S, Abe S, Yoshida MC (1999) Differentiation of Z and W chromosomes revealed by replication banding and FISH mapping of sex-chromosome-linked DNA markers in the cassowary (Aves, Ratitae). Chromosome Res 7:635–640

    PubMed  CAS  Google Scholar 

  • Niu D, Fu Y, Luo J, Ruan H, Yu XP, Chen G, Zhang YP (2002) The origin and genetic diversity of Chinese native chicken breeds. Biochem Genet 40:163–174

    PubMed  CAS  Google Scholar 

  • Niwa T, Shibusawa M, Matsuda Y, Terashima A, Nakamura A, Shiojiri N (2003) The Bh (black at hatch) gene that causes abnormal feather pigmentation maps to chromosome 1 of the Japanese quail. Pigment Cell Res 16:656–661

    PubMed  CAS  Google Scholar 

  • Ogawa A, Solovei I, Hutchison N, Saitoh Y, Ikeda JE, Macgregor H, Mizuno S (1997) Molecular characterization and cytological mapping of a non-repetitive DNA sequence region from the W chromosome of chicken and its use as a universal probe for sexing carinatae birds. Chromosome Res 5:93–101

    PubMed  CAS  Google Scholar 

  • Ogawa A, Murata K, Mizuno S (1998) The location of Z- and W-linked marker genes and sequence on the homomorphic sex chromosomes of the ostrich and the emu. Proc Natl Acad Sci USA 95:4415–4418

    PubMed  CAS  Google Scholar 

  • Ohno S (1961) Sex chromosomes and microchromosomes ofGallus domesticus. Chromosoma 11:484–498

    PubMed  CAS  Google Scholar 

  • Okimoto R, Stie JT, Takeuchi S, Payne WS, Salter DW (1999) Mapping the melanocortin 1-receptor (MC1-R) gene and association of MC1-R polymorphisms withElocus phe-notypes. Poult Sci 78(Suppl):60

    Google Scholar 

  • O'Neill M, Binder M, Smith C, Andrews J, Reed K, Smith M, Millar C, Lambert D, Sinclair A (2000)ASW: a gene with conserved avian W-linkage and female specific expression in chick embryonic gonad. Dev Genes Evol 210:243–249

    PubMed  Google Scholar 

  • Palyga J (1998) Genes for polymorphic H1 histones are linked in the Japanese quail genome. Biochem Genet 36:93–103

    PubMed  CAS  Google Scholar 

  • Pang SW, Ritland C, Carlson JE, Cheng KM (1999) Japanese quail microsatellite loci amplified with chicken-specific primers. Anim Genet 30:195–199

    PubMed  CAS  Google Scholar 

  • Passarge E, Horsthemke B, Farber RA (1999) Incorrect use of the term synteny. Nat Genet 23:387

    PubMed  CAS  Google Scholar 

  • Peters JP (1913) The cock. J Am Orient Soc 33:363–396

    Google Scholar 

  • Petrov SG (1931) Plan of the chromosomes of the domestic fowl. Zh Eksp Biol 7:71–76

    Google Scholar 

  • Petrov SG (1941) Origin of the domestic fowl. DSc (Biol) Thesis, Moscow, USSR

    Google Scholar 

  • Petrov SG (1962) Origin and evolution of domestic fowl. In: Penionzhkevich EE (ed) Poultry Science and Practice. Israel Program Sci Transl U S Dept Commer, Springfield, MS, USA, vol 1 (translated 1968)

    Google Scholar 

  • Pigozzi MI, Solari AJ (1998) Germ cell restriction and regular transmission of an accessory chromosome that mimics a sex body in the zebra finch,Taeniopygia guttata. Chromosome Res 6:105–113

    PubMed  CAS  Google Scholar 

  • Pimentel-Smith GE, Shi L, Drummond P, Tu Z, Smith EJ (2000) Amplification of sequence tagged sites in five avian species using heterologous oligonucleotides. Genetica 110:219–226

    PubMed  CAS  Google Scholar 

  • Pisenti JM, Delany ME, Taylor RL, Jr, Abbott UK, Abplanalp H, Arthur JA, Bakst MR, Baxter-Jones C, Bitgood JJ, Bradley F, Cheng KM, Dietert RR, Dodgson JB, Donoghue A, Emsley AE, Etches R, Frahm RR, Gerrits RJ, Goetinck PF, Grunder AA, Harry DE, Lamont SJ, Martin GR, McGuire PE, Moberg GP, Pierro LJ, Qualset CO, Qureshi M, Schultz F, Wilson BW (1999) Avian genetic resources at risk: an assessment and proposal for conservation of genetic stocks in the USA and Canada. Rep No 20, Univ Calif, Div Agric Nat Resour, Genet Resour Conserv Program, Davis, CA, USA

    Google Scholar 

  • Pitel F, Berge R, Coquerelle G, Crooijmans RPMA, Groenen MAM, Vignal A, Tixier-Boichard M (2000) Mapping the Naked Neck (NA) and Polydactyly (PO) mutants of the chicken with mic- rosatellite molecular markers. Genet Sel Evol 32:73–86

    PubMed  CAS  Google Scholar 

  • Plant WJ (1984) The Origin, Evolution, History and Distribution of the Domestic Fowl, Pt 2. Chicken Bone Recoveries. Privately published, 54 Bonar Street, Maitland 2320, N.S.W., Australia

    Google Scholar 

  • Plant WJ (1986) The Origin, Evolution, History and Distribution of the Domestic Fowl, Pt 3. The Gallus Species. Jungle Fowls. Privately published, 54 Bonar Street, Maitland 2320, N.S.W., Australia

    Google Scholar 

  • Plotsky Y, Kaiser MG, Lamont SJ (1995) Genetic characterization of highly inbred chicken lines by two DNA methods: DNA fingerprinting and polymerase chain reaction using arbitrary primers. Anim Genet 26:163–170

    PubMed  CAS  Google Scholar 

  • Pond WG, Bell AW (eds) (2004) Encyclopedia of Animal Science. Marcel Dekker, New York, USA

    Google Scholar 

  • Punnett RC, Bateson W (1908) The heredity of sex. Science 27:785–787

    PubMed  Google Scholar 

  • Raudsepp T, Houck ML, O'Brien PC, Ferguson-Smith MA, Ryder OA, Chowdhary BP (2002) Cytogenetic analysis of California condor (Gymnogyps californianus) chromosomes: comparison with chicken (Gallus gallus) macro-chromosomes. Cytogenet Genome Res 98:54–60

    PubMed  CAS  Google Scholar 

  • Reed KM, Chaves LD, Garbe JR, Da Y, Harry DE (2003) Allelic variation and genetic linkage of avian microsatellites in a new turkey population for genetic mapping. Cytogenet Genome Res 102:331–339

    PubMed  CAS  Google Scholar 

  • Ren CW, Lee MK, Yan B, Ding K, Cox B, Romanov MN, Price JA, Dodgson JB, Zhang HB (2003) A BAC-based physical map of the chicken genome. Genome Res 13:2754–2758

    PubMed  CAS  Google Scholar 

  • Rodionov AV (1996) Micro versus macro: a review of structure and function of avian micro- and macrochromosomes. Genetika 32:597–608

    PubMed  CAS  Google Scholar 

  • Rodionov AV (1997) Evolution of avian chromosomes and linkage groups. Rus J Genet 33:605–617

    CAS  Google Scholar 

  • Rodionov AV, Lukina NA, Galkina SA, Solovei I, Saccone S (2002) Crossing over in chicken oogenesis: cytological and chiasma-based genetic maps of chicken lampbrush chromosome 1. J Hered 93:125–129

    PubMed  CAS  Google Scholar 

  • Romanov MN, Bondarenko YV (1988) Improvement of a colour-sexing cross of chickens. Nauchno-tekhnicheskiy byul-leten, Ukr Poult Res Inst, Kharkiv, USSR, No 24:8–10

    Google Scholar 

  • Romanov MN, Dodgson JB (2006) Cross-species overgo hybridization and comparative physical mapping within avian genomes. Anim Genet 37:397–399

    PubMed  CAS  Google Scholar 

  • Romanov MN, Weigend S (2001a) Using RAPD markers for assessment of genetic diversity in chickens. Arch Geflügelkd 65:145–148

    Google Scholar 

  • Romanov MN, Weigend S (2001b) Analysis of genetic relationships between various populations of domestic and jungle fowl using microsatellite markers. Poult Sci 80:1057–1063

    CAS  Google Scholar 

  • Romanov MN, Price JA, Dodgson JB (2003) Integration of animal linkage and BAC contig maps using overgo hybridization. Cytogenet Genome Res 102:277–281

    PubMed  CAS  Google Scholar 

  • Romanov MN, Sazanov AA, Smirnov AF (2004) First century of chicken gene study and mapping — a look back and forward. Worlds Poult Sci J 60:19–41

    Google Scholar 

  • Romanov MN, Daniels LM, Dodgson JB, Delany ME (2005) Integration of the cytogenetic and physical maps of chicken chromosome 17. Chromosome Res 13:215–222

    PubMed  CAS  Google Scholar 

  • Romanov MN, Koriabine M, Nefedov M, de Jong PJ, Ryder OA (2006) Construction of a California condor BAC library and first-generation chicken-condor comparative physical map as an endangered species conservation genomics resource. Genomics 88:711–718

    PubMed  CAS  Google Scholar 

  • Roots EH, Baker RJ (2002) Distribution and characterization of microsatellites in the emu (Dromaius novaehollandiae) genome. J Hered 93:100–106

    PubMed  CAS  Google Scholar 

  • Ruytier-Spira C P, Gu ZL, van der Poel JJ, Groenen MAM (1997) Bulked segregant analysis using microsatellites: mapping of the dominant white locus in the chicken. Poult Sci 76:386–391

    Google Scholar 

  • Ruyter-Spira C P, de Groof AJC, van der Poel JJ, Herbergs J, Masabanda J, Fries R, Groenen MAM (1998) The HMGI-C gene is a likely candidate for the autosomal dwarf locus in the chicken. J Hered 89:295–300

    PubMed  CAS  Google Scholar 

  • Saitoh Y, Ogawa A, Hori T, Kunita R, Mizuno S (1993) Identification and localization of two genes on the chicken Z chromosome: implication of evolutionary conservation of the Z chromosome among avian species. Chromosome Res 1:239–251

    PubMed  CAS  Google Scholar 

  • Sasaki M, Ikeuchi T, Makino S (1968) A feather pulp culture technique for avian chromosomes, with notes on the chromosomes of the peafowl and the ostrich. Experientia 24:1292–1293

    Google Scholar 

  • Sasaki O, Odawara S, Takahashi H, Nirasawa K, Oyamada Y, Yamamoto R, Ishii K, Nagamine Y, Takeda H, Kobayashi E, Furukawa T (2004) Genetic mapping of quantitative trait loci affecting body weight, egg character and egg production in F2 intercross chickens. Anim Genet 35:188–194

    PubMed  CAS  Google Scholar 

  • Sasazaki S, Hinenoya T, Fujima D, Kikuchi S, Fujiwara A, Man-nen H (2006a) Mapping of EST markers with cDNA-AFLP method in Japanese quail (Coturnix japonica). Anim Sci J 77:42–46

    CAS  Google Scholar 

  • Sasazaki S, Hinenoya T, Lin B, Fujiwara A, Mannen H (2006b) A comparative map of macrochromosomes between chicken and Japanese quail based on orthologous genes. Anim Genet 37:316–320

    CAS  Google Scholar 

  • Sazanov A, Masabanda J, Ewald D, Takeuchi S, Tixier-Boichard M, Buitkamp J, Fries R (1998) Evolutionarily conserved telo- meric location ofBBC1andMC1Ron a microchromo-some questions the identity ofMC1Rand a pigmentation locus on chromosome 1 in chicken. Chromosome Res 6:651–654

    PubMed  CAS  Google Scholar 

  • Sazanov AA, Trukhina AV, Smirnov AF, Jaszczak K (2002) Two chicken genesAPOA1andETS1are physically assigned to the same microchromosome. Anim Genet 33:321–322

    PubMed  CAS  Google Scholar 

  • Sazanov AA, Sazanova AL, Tzareva VA, Kozyreva AA, Smirnov AF, Romanov MN, Price JA, Dodgson JB (2004a) Refined localization of the chicken KITLG, MGP and TYR genes on GGA1 by FISH mapping using BACs. Anim Genet 35:148–150

    CAS  Google Scholar 

  • Sazanov AA, Sazanova AL, Stekolnikova VA, Kozyreva AA, Smir-nov AF, Romanov MN, Dodgson JB (2004b) Chromosomal localization ofCTSL: expanding of the region of evolutionary conservatism between GGAZ and HSA9. Anim Genet 35:260

    CAS  Google Scholar 

  • Sazanov AA, Romanov MN, Wardcka B, Sazanova AL, Korczak M, Stekol'nikova VA, Kozyreva AA, Smirnov AF, Jaszczak K, Dodgson JB (2005) Chromosomal localization of fifteen large insert BAC clones containing three micro-satellites on chicken chromosome 4 (GGA4) which refine its centromere position. Anim Genet 36:161–163

    PubMed  CAS  Google Scholar 

  • Savage TF, Harper JA, Engel HN, Jr (1993) Inheritance of tetanic torticollar spasms in turkeys. Poult Sci 72:1212–1217

    Google Scholar 

  • Scherf BD (ed) (2000) World watch list for domestic animal diversity, 3rd edn. Food and Agriculture Organization of the United Nations, Rome, Italy http://dad.fao.org/

    Google Scholar 

  • Schmid M, Nanda I, Guttenbach M, Steinlein C, Hoehn M, Schartl M, Haaf T, Weigend S, Fries R, Buerstedde J-M, Wimmers K, Burt DW, Smith J, A'Hara S, Law A, Griffin DK, Bumstead N, Kaufman J, Thomson PA, Burke T, Groenen MAM, Crooijmans RPMA, Vignal A, Fillon V, Morisson M, Pitel F, Tixier-Boichard M, Ladjali-Moham-medi K, Hillel J, Mäki-Tanila A, Cheng HH, Delany ME, Burnside J, Mizuno S (2000) First report on chicken genes and chromosomes 2000. Cytogenet Cell Genet 90:169–218

    PubMed  CAS  Google Scholar 

  • Schmid M, Nanda I, Hoehn H, Schartl M, Haaf T, Buerstedde J-M, Arakawa H, Caldwell RB, Weigend S, Burt DW, Smith J, Griffin DK, Masabanda JS, Groenen MAM, Crooijmans RPMA, Vignal A, Fillon V, Morisson M, Pitel F, Vignoles M, Garrigues A, Gellin J, Rodionov AV, Galkina SA, Lukina NA, Ben-Ari G, Blum S, Hillel J, Twito T, Lavi U, David L, Feldman MW, Delany ME, Conley CA, Fowler VM, Hedges SB, Godbout R, Katyal S, Smith C, Hudson Q, Sinclair A, Mizuno S (2005) Second report on chicken genes and chromosomes 2005. Cytogenet Genome Res 109:415–479

    PubMed  CAS  Google Scholar 

  • Schütz K, Kerje S, Carlborg O, Jacobsson L, Andersson L, Jensen P (2002) QTL analysis of a red junglefowl × White Leghorn intercross reveals trade-off in resource allocation between behavior and production traits. Behav Genet 32:423–433

    PubMed  Google Scholar 

  • Semyenova SK, Filenko AL, Vasilyev VA, Prosnyak MI, Sevasty-anova AA, Ryskov AP (1996) Differentiation of chicken breeds of different origin by polymorphic DNA markers. Genetika 32:795–803

    Google Scholar 

  • Serebrovsky AS (1922) Crossing-over involving three sex- linked genes in chickens. Am Nat 56:571–572

    Google Scholar 

  • Serebrovsky AS (1926) Studies on genetics of domestic fowl. In: Koltzoff NK (ed) Genetics of the domestic fowl: memoirs of Anikowo Genetical Station near Moscow. Commissariat Agric, Novaia Derevnia, Moscow, USSR, pp 3–74. (Abstracted in: Dunn, 1929)

    Google Scholar 

  • Serebrovsky AS, Petrov SG (1928) A case of close autosomal linkage in the fowl. J Hered 19:306–306

    Google Scholar 

  • Serebrovsky AS, Petrov SG (1930) On the composition of the plan of the chromosomes of the domestic hen. Zh Eksp Biol 6:157–180

    Google Scholar 

  • Serebrovsky AS, Wassina ET (1927) On the topography of the sex-chromosome in fowls. J Genet 17:211–216

    Google Scholar 

  • Sewalem A, Morrice DM, Law A, Windsor D, Haley CS, Ikeobi CO, Burt DW, Hocking PM (2002) Mapping of quantitative trait loci for body weight at three, six, and nine weeks of age in a broiler layer cross. Poult Sci 81:1775–1781

    PubMed  CAS  Google Scholar 

  • Shetty S, Griffin DK, Graves JA (1999) Comparative painting reveals strong chromosome homology over 80 million years of bird evolution. Chromosome Res 7:289–295

    PubMed  CAS  Google Scholar 

  • Shetty S, Kirby P, Zarkower D, Graves JA (2002) DMRT1 in a ratite bird: evidence for a role in sex determination and discovery of a putative regulatory element. Cytogenet Genome Res 99:245–251

    PubMed  CAS  Google Scholar 

  • Shibusawa M, Minai S, Nishida-Umehara C, Suzuki T, Mano T, Yamada K, Namikawa T, Matsuda Y (2001) A comparative cytogenetic study of chromosome homology between chicken and Japanese quail. Cytogenet Cell Genet 95: 103–109

    PubMed  CAS  Google Scholar 

  • Shibusawa M, Nishida-Umehara C, Masabanda J, Griffin DK, Isobe T, Matsuda Y (2002) Chromosome rearrangements between chicken and guinea fowl defined by comparative chromosome painting and FISH mapping of DNA clones. Cytogenet Genome Res 98:225–230

    PubMed  CAS  Google Scholar 

  • Shibata T, Abe T (1996) Linkage between the loci for serum albumin and vitamin D binding protein (GC) in the Japanese quail. Anim Genet 27:195–197

    CAS  Google Scholar 

  • Shiina T, Shimizu C, Oka A, Teraoka Y, Imanishi T, Gojobori T, Hanzawa K, Watanabe S, Inoko H (1999) Gene organization of the quail major histocompatibility complex (MhcCoja) class I gene region. Immunogenetics 49:384–394

    PubMed  CAS  Google Scholar 

  • Sibley CG (1996) Birds of the world. Thayer Birding Software, Version 2.0, Dec 1996 (a computerized book on two compressed 3.5 inch diskettes). Thayer Birding Software, Naples, USA. http://www.thayerbirding.com/Default.aspx? TabId=581; Sibley's Sequence,http://www.scricciolo.com/classificazione/sequence.htm(accessed August 20, 2008)

  • Siegel PB, Haberfeld A, Mukherjee TK, Stallard LC, Marks HL, Anthony NB, Dunnington EA (1992) Jungle fowl-domestic fowl relationships: a use of DNA fingerprinting. Worlds Poult Sci J 48:147–155

    Google Scholar 

  • Siwek M, Cornelissen SJB, Nieuwland MGB, Buitenhuis AJ, Bovenhuis H, Crooijmans RPMA, Groenen MAM, de Vries-Reilingh G, Parmentier HK, van der Poel JJ (2003a) Detection of QTL for immune response to sheep red blood cells in laying hens. Anim Genet 34:422–428

    CAS  Google Scholar 

  • Siwek M, Buitenhuis AJ, Cornelissen SJB, Nieuwland MGB, Bovenhuis H, Crooijmans RPMA, Groenen MAM, de Vries-Reilingh G, Parmentier HK, van der Poel JJ (2003b) Detection of different quantitative trait loci for antibody responses to keyhole lympet hemocyanin andMycobac-terium butyricumin two unrelated populations of laying hens. Poult Sci 82:1845–1852

    CAS  Google Scholar 

  • Smith E, Shi L, Drummond P, Rodriguez L, Hamilton R, Powell E, Nahashon S, Ramlal S, Smith G, Foster J (2000a) Development and characterization of expressed sequence tags for the turkey (Meleagris gallopavo) genome and comparative sequence analysis with other birds. Anim Genet 31:62–67

    CAS  Google Scholar 

  • Smith EJ, Shi L, Drummond P, Rodriguez L, Hamilton R, Ramlal S, Smith G, Pierce K, Foster J (2001a) Expressed sequence tags for the chicken genome from a normalized 10-day-old White Leghorn whole embryo cDNA library: 1. DNA sequence characterization and linkage analysis. J Hered 92:1–8

    CAS  Google Scholar 

  • Smith EJ, Shi L, Prevost L, Drummond P, Ramlal S, Smith G, Pierce K, Foster J (2001b) Expressed sequence tags for the chicken genome from a normalized, ten-day-old white leghorn whole embryo cDNA library. 2. Comparative DNA sequence analysis of guinea fowl, quail, and turkey genomes. Poult Sci 80:1263–1272

    CAS  Google Scholar 

  • Smith J, Bruley CK, Paton IR, Dunn I, Jones CT, Windsor D, Mor-rice DR, Law AS, Masabanda J, Sazanov A, Waddington D, Fries R, Burt DW (2000b) Differences in gene density on chicken macrochromosomes and microchromosomes. Anim Genet 31:96–103

    CAS  Google Scholar 

  • Smith J, Speed D, Hocking PM, Talbot RT, Degen WG, Schijns VE, Glass EJ, Burt DW (2006) Development of a chicken 5 K microarray targeted towards immune function. BMC Genomics 7:49

    PubMed  Google Scholar 

  • Smith P, Daniel C (1975) The Chicken Book. Little, Brown, Toronto, Quebec, Canada

    Google Scholar 

  • Sokolovskaya II (1935) Sex-linked characters in hybrids between the Muscovy duck (Cairina moschata) and Khaki duck(Anas platyrincha). In: Nurinov AA (ed) Hybridization and Acclimatization of Farm Animals in Askania Nova. VASKhNIL, Moscow Leningrad, USSR, Issue 4, vol II, pp 144–156

    Google Scholar 

  • Soller M, Weigend S, Romanov MN, Dekkers JCM, Lamont SJ (2006) Strategies to assess structural variation in the chicken genome and its associations with biodiversity and biological performance. Poult Sci 85:2061–2078

    PubMed  CAS  Google Scholar 

  • Somes RG Jr (1973) Linkage relationships in domestic fowl. J Hered 64:217–221

    PubMed  Google Scholar 

  • Somes RG Jr (1978) New linkage groups and revised chromosome map of the domestic fowl. J Hered 69:401–403

    Google Scholar 

  • Somes RG Jr (1987) Linked loci of the chicken — Gallus gallus (G. domesticus). In: O'Brien S (ed) Genetic Maps, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, USA, pp 422–429

    Google Scholar 

  • Somes RG Jr (1992) Identifying the ptilopody (feathered shank) loci of the chicken. J Hered 83:230–234

    PubMed  Google Scholar 

  • Somes RG Jr, Burger RE (1988) A sex-linked mutation in the Indian blue peafowl (Pavo cristatus). Poultry Sci 66(Suppl 1):158

    Google Scholar 

  • Sørensen P (1997) The population of laying hens loses important genes: a case history. Anim Genet Resour Inf 22:71–78

    Google Scholar 

  • Spillman WJ (1908) Spurious allelomorphism: results of some recent investigations. Am Nat 42:610–615

    Google Scholar 

  • Staško J (1970) K autosexingu u husi chovanych na Slovensky. Vedecke Prace—Hydinarstvo, No 9:5–13

    Google Scholar 

  • Stern CD (2004) The chick embryo—Past, present and future as a model system in developmental biology. Mech Dev 121:1011–1013

    PubMed  CAS  Google Scholar 

  • Stern CD (2005) The chick: a great model system becomes even greater. Dev Cell 8:9–17

    PubMed  CAS  Google Scholar 

  • Stevens L (1986) Gene structure and organisation in the domestic fowl (Gallus domesticus). Worlds Poult Sci J 42:232–242

    Google Scholar 

  • Stevens L (1991) Genetics and evolution of the domestic fowl. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Sturtevant AH (1911) Another sex-limited character in fowls. Science 33:337–338

    PubMed  Google Scholar 

  • Sturtevant AH (1912) An experiment dealing with sex-linkage in fowls. J Exp Zool 12:499–518

    Google Scholar 

  • Suchyta SP, Cheng HH, Burnside J, Dodgson JB (2001) Comparative mapping of chicken anchor loci orthologous to genes on human chromosomes 1, 4 and 9. Anim Genet 32:12–18

    PubMed  CAS  Google Scholar 

  • Sungurov AN (1933) On the plan of the fowl chromosomes. Biol Zh 2:196–201

    Google Scholar 

  • Suttle AD, Sipe GR (1932) Linkage of genes for crest and frizzle. J Hered 23:135–142

    Google Scholar 

  • Sutton WS (1903) The chromosomes in heredity. Biol Bull 4:231–251

    Google Scholar 

  • Suzuki T, Kansaku N, Kurosaki T, Shimada K, Zadworny D, Koide M, Mano T, Namikawa T, Matsuda Y (1999a) Comparative FISH mapping on Z chromosomes of chicken and Japanese quail. Cytogenet Cell Genet 87:22–26

    CAS  Google Scholar 

  • Suzuki T, Kurosaki T, Shimada K, Kansaku N, Kuhnlein U, Zad-worny D, Agata K, Hashimoto A, Koide M, Koike M, Takata M, Kuroiwa A, Minai S, Namikawa T, Matsuda Y (1999b) Cytogenetic mapping of 31 functional genes on chicken chromosomes by direct R-banding FISH. Cytogenet Cell Genet 87:32–40

    CAS  Google Scholar 

  • Takagi N, Itoh M, Sasaki M (1972) Chromosome studies in four species of Ratitae (Aves). Chromosoma 36:281–291

    PubMed  CAS  Google Scholar 

  • Takagi N, Sasaki M (1974) A phylogenetic study of bird karyo-types. Chromosoma 46:91–120

    PubMed  CAS  Google Scholar 

  • Takahashi H, Tsudzuki M, Sasaki O, Niikura J, Inoue-Murayama M, Minezawa M (2005) A chicken linkage map based on microsatellite markers genotyped on a Japanese Large Game and White Leghorn cross. Anim Genet 36:463–467

    PubMed  CAS  Google Scholar 

  • Takahashi R, Akahane K, Arai K (2003) Nucleotide sequences of pigeon feather keratin genes. DNA Seq 14:205–210

    PubMed  CAS  Google Scholar 

  • Tang B, Huang YH, Lin L, Hu XX, Feng JD, Yao P, Zhang L, Li N (2003) Isolation and characterization of 70 novel microsatellite markers from ostrich (Struthio camelus) genome. Genome 46:833–840

    PubMed  CAS  Google Scholar 

  • Tatsuda K, Fujinaka K (2001) Genetic mapping of QTL affecting body weight in chickens using a F2 family. Br Poult Sci 42:333–337

    PubMed  CAS  Google Scholar 

  • Taylor EL, Vercoe P, Cockrem J, Groth D, Wetherall JD, Martin GB (1999) Isolation and characterization of microsatellite loci in the emu, Dromaius novaehollandiae, and cross-species amplification within Ratitae. Mol Ecol 8:1963–1964

    PubMed  CAS  Google Scholar 

  • Tegetmeier WB (1873) The Poultry Book: Comprising the Breeding and Management af Profitable and Ornamental Poultry. G. Routledge, London, UK

    Google Scholar 

  • Thomas JW, Prasad AB, Summers TJ, Lee-Lin SQ, Maduro VV, Idol JR, Ryan JF, Thomas PJ, McDowell JC, Green ED (2002) Parallel construction of orthologous sequence-ready clone contig maps in multiple species. Genome Res 12:1277–1285

    PubMed  CAS  Google Scholar 

  • Tirunagaru VG, Sofer L, Cui J, Burnside J (2000) An expressed sequence tag database of T-cell-enriched activated chicken splenocytes: sequence analysis of 5251 clones. Genomics 66:144–1451

    PubMed  CAS  Google Scholar 

  • Toye AA, Schalkwyk L, Lehrach H, Bumstead N (1997) A yeast artificial chromosome (YAC) library containing 10 haploid chicken genome equivalents. Mamm Genome 8:274–276

    PubMed  CAS  Google Scholar 

  • Traxler B, Brem G, Muller M, Achmann R (2000) Polymorphic DNA microsatellites in the domestic pigeon, Columba livia var. domestica. Mol Ecol 9:366–368

    PubMed  CAS  Google Scholar 

  • Trefil P, Bruno MM, Mikus T, Thoraval P (1999) Sexing of chicken feather follicle, blastodermal and blood cells. Folia Biol (Praha) 45:253–256

    CAS  Google Scholar 

  • Tsuda Y, Nishida-Umehara C, Ishijima J, Yamada K, Matsuda Y (2007) Comparison of the Z and W sex chromosomal architectures in elegant crested tinamou (Eudromia elegans) and ostrich (Struthio camelus) and the process of sex chromosome differentiation in palaeognathous birds. Chromosoma 116:159–173

    PubMed  Google Scholar 

  • Tuiskula-Haavisto M, Honkatukia M, Vikki J, de Koning D-J, Schulman NF, Mäki-Tanila A (2002) Mapping of quantitative trait loci affecting quality and production traits in eggs layers. Poult Sci 81:919–927

    PubMed  CAS  Google Scholar 

  • Vallejo RL, Bacon LD, Liu HC, Witter RL, Groenen MAM, Hillel J, Cheng HH (1998) Genetic mapping of quantitative trait loci affecting susceptibility to Marek's disease virus induced tumors in F2 intercross chickens. Genetics 148:349–360

    PubMed  CAS  Google Scholar 

  • van Hemert S, Hoekman AJW, Smits MA, Rebel JMJ (2007) Immunological and gene expression responses to a Salmonella infection in the chicken intestine. Ve t Res 38:51–63

    Google Scholar 

  • van Kaam JBCHM, van Arendonk JAM, Groenen MAM, Boven-huis H, Vereijken ALJ, Crooijmans RPMA, van der Poel JJ,Veenendaal A (1998) Whole genome scan in chickens for quantitative trait loci affecting body weight in chickens using a three generation design. Livest Prod Sci 54:133–150

    Google Scholar 

  • van Kaam JBCHM, Groenen MAM, Bovenhuis H, Veenendaal A, Vereijken ALJ, Van Arendonk JAM (1999a) Whole genome scan in chickens for quantitative trait loci affecting growth and feed efficiency. Poult Sci 78:15–23

    Google Scholar 

  • van Kaam JBCHM, Groenen MAM, Bovenhuis H, Veenendaal A, Vereijken ALJ, van Arendonk JAM (1999b) Whole genome scan in chickens for quantitative trait loci affecting carcass traits. Poult Sci 78:1091–1099

    Google Scholar 

  • van Kaam JBCHM, Bink MCAM, Bovenhuis H, Quaas RL (2002) Scaling to account for heterogeneous variances in a Bayesian analysis of broiler quantitative trait loci. J Anim Sci 80:45–56

    PubMed  Google Scholar 

  • van Tuinen M, Dyke GJ (2004) Calibration of galliform molecular clocks using multiple fossils and genetic partitions. Mol Phylogenet Evol 30:74–86

    PubMed  Google Scholar 

  • Waddington D, Springbett AJ, Burt DW (2000) A chromosome-based model for estimating the number of conserved segments between pairs of species from comparative genetic maps. Genetics 154:323–332

    PubMed  CAS  Google Scholar 

  • Wade J, Peabody C, Coussens P, Tempelman RJ, Clayton DF, Liu L, Arnold A P, Agate R (2004) A cDNA microarray from the telencephalon of juvenile male and female zebra finches. J Neurosci Methods 138:199–206

    PubMed  CAS  Google Scholar 

  • Wakana S, Watanabe T, Hayashi Y, Tomita T (1986) A variant in the restriction endonuclease cleavage pattern of mito-chondrial DNA in the domestic fowl, Gallus gallus domes-ticus. Anim Genet 17:159–168

    PubMed  CAS  Google Scholar 

  • Wallis JW, Aerts J, Groenen M, Crooijmans R, Layman D, Graves T, Scheer D, Kremitzki C, Higgenbotham J, Gaige T, Mead K, Walker J, Albracht D, Davito J, Yang S-P, Leong S, Chinwalla A, Hillier L, Sekhon M, Wylie K, Dodgson J, Romanov MN, Cheng H, de Jong PJ, Zhang H, McPherson JD, Krzywinski M, Schein J, Mardis E, Wilson R, Warren WC (2004) A physical map of the chicken genome. Nature 432:761–764

    PubMed  CAS  Google Scholar 

  • Wang H, Li H, Wang Q, Wang Y, Han H, Shi H (2006) Micro-array analysis of adipose tissue gene expression profiles between two chicken breeds. J Biosci 31:565–573

    PubMed  CAS  Google Scholar 

  • Wang N, Shoffner RN (1974) Trypsin G- and C-banding for interchange analysis and sex identification in the chicken. Chromosoma 47:61–69

    PubMed  CAS  Google Scholar 

  • Wang W, Lan H, Liu AH, Shi LM (1994) Variation of mitochon-drial DNA among domestic fowl and red jungle fowl. Zool Res 15:55–60

    CAS  Google Scholar 

  • Wardęcka B, Olszewski R, Jaszczak K, Zęba C, Pierzchala M, Wicirińska K (2002) Relationship between microsatellite marker alleles on chromosome 1–5 originating from the Rhode Island Red and Green-legged Partrigenous breeds and egg production and quality traits in F2 mapping population. J Appl Genet 43:319–329

    PubMed  Google Scholar 

  • Warren DC (1928) Sex-linked characters of poultry. Genetics 13:421–433

    PubMed  CAS  Google Scholar 

  • Warren DC (1933) Nine independently inherited autosomal factors in the domestic fowl. Genetics 18:68–81

    PubMed  CAS  Google Scholar 

  • Warren DC (1935) A new linkage group in the fowl (Gallus domesticus). Am Nat 69:82

    Google Scholar 

  • Warren DC, Hutt FB (1936) Linkage relations of crest, dominant white and frizzling in the fowl. Am Nat 70:379–394

    Google Scholar 

  • Weigend S, Romanov MN (2001) Current strategies for the assessment and evaluation of genetic diversity in chicken resources. Worlds Poult Sci J 57:275–288

    Google Scholar 

  • Weigend S, Romanov MN (2002) The World Watch List for Domestic Animal Diversity in the context of conservation and utilisation of poultry biodiversity. Worlds Poult Sci J 58:519–538

    Google Scholar 

  • Weigend S, Vef E, Wesch G, Meckenstock E, Seibold R, Ellen-dorff F (1995) Concept for conserving genetic resources in poultry in Germany. Arch Geflügelkd 59:327–334

    Google Scholar 

  • West B, Zhou BX (1989) Did chicken go North? New evidence for domestication. Worlds Poult Sci J 45:205–218

    Google Scholar 

  • Wimmers K, Valle-Zarate A, Mathur PK, Horst P, Wittig B (1992) Oligonucleotide fingerprinting in chickens. Proc 19th Worlds Poult Congr, Amsterdam, The Netherlands, September 19–14, 1992, vol 1, pp 539–540

    Google Scholar 

  • Wood-Gush DGM (1959) A history of the domestic chicken from antiquity to the 19th century. Poult Sci 38:321–326

    Google Scholar 

  • Wright TF, Brittan-Powell EF, Dooling RJ, Mundinger PC (2004) Sex-linked inheritance of hearing and song in the Belgian Waterslager canary. Proc Biol Sci 271(Suppl 6): S409–S412

    PubMed  Google Scholar 

  • Xu G, Goodridge AG (1998) A CT repeat in the promoter of the chicken malic enzyme gene is essential for function at an alternative transcription start site. Arch Biochem Biophys 358:83–91

    PubMed  CAS  Google Scholar 

  • Xu S, Yonash N, Vallejo RL, Cheng HH (1998) Mapping quantitative trait loci for binary traits using a heterogeneous residual variance model: an application to Marek's disease susceptibility in chickens. Genetica 104:171–178

    PubMed  CAS  Google Scholar 

  • Yamashina Y (1944) Karyotype studies in birds. I. Comparative morphology of chromosomes in seventeen races of domestic fowl. Cytologia (Tokyo) 13:270–296

    Google Scholar 

  • Yamashita H, Okamoto S, Maeda Y, Hashiguchi T (1994) Genetic relationships among domestic and jungle fowls revealed by DNA fingerprinting analysis. Jap Poult Sci 31:335–344

    CAS  Google Scholar 

  • Yang KT, Lin CY, Liou JS, Fan YH, Chiou SH, Huang CW, Wu CP, Lin EC, Chen CF, Lee YP, Lee WC, Ding ST, Cheng WT, Huang MC (2006) Differentially expressed transcripts in shell glands from low and high egg production strains of chickens using cDNA microarrays. Anim Reprod Sci 101:113–124.

    PubMed  Google Scholar 

  • Yonash N, Bacon LD, Witter RL, Cheng HH (1999) High resolution mapping and identification of new quantitative trait loci (QTL) affecting susceptibility to Marek's disease. Anim Genet 30:126–135

    PubMed  CAS  Google Scholar 

  • Yonash N, Cheng HH, Hillel J, Heller DE, Cahaner A (2001) DNA microsatellites linked to quantitative trait loci affecting antibody response and survival rate in meat-type chickens. Poult Sci 80:22–28

    PubMed  CAS  Google Scholar 

  • Yuan X, Zhang M, Ruan W, Song C, Ren L, Guo Y, Hu X, Li N (2006) Construction and characterization of a duck bacterial artificial chromosome library. Anim Genet 37:599–600

    PubMed  CAS  Google Scholar 

  • Zeuner FE (1963) A History of Domesticated Animals. Hutch- inson, London, UK

    Google Scholar 

  • Zhou H, Li H, Lamont SJ (2003) Genetic markers associated with antibody response kinetics in adult chickens. Poult Sci 82:699–708

    PubMed  CAS  Google Scholar 

  • Zhu JJ, Lillehoj HS, Allen PC, Van Tassell C P, Sonstegard TS, Cheng HH, Pollock D, Sadjadi M, Min W, Emara MG (2003) Mapping quantitative trait loci associated with resistance to coccidiosis and growth. Poult Sci 82:9–16

    PubMed  CAS  Google Scholar 

  • Zimmer R, Verrinder Gibbins AM (1997) Construction and characterization of a large-fragment chicken bacterial artificial chromosome library. Genomics 42:217–226

    PubMed  CAS  Google Scholar 

  • Zimmer R, King WA, Verrinder Gibbins AM (1997) Generation of chicken Z-chromosome painting probes by micro-dissection for screening large-insert genomic libraries. Cytogenet Cell Genet 78:124–130

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael N. Romanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Romanov, M.N., Sazanov, A.A., Moiseyeva, I., Smirnov, A.F. (2009). Poultry. In: Cockett, N.E., Kole, C. (eds) Genome Mapping and Genomics in Domestic Animals. Genome Mapping and Genomics in Animals, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73835-0_5

Download citation

Publish with us

Policies and ethics