Skip to main content

Epsilon-Pseudo-Orbits and Applications

  • Conference paper
Unifying Themes in Complex Systems IV
  • 1374 Accesses

Abstract

We consider dynamical systems consisting of the iteration of continuous functions on compact metric spaces. Basic definitions and results on chain recurrence and the Conley Decomposition Theorem in this setting are presented. An ε-pseudo-orbit approximation for the dynamics, with ε of fixed size, is presented as a mathematical representation of a computer model of such a discrete dynamical system. We see that the Conley decomposition of a space can be approximated by an ε-coarse Conley decomposition in this setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conf. Ser. in Math., Vol. 38, Amer. Math. Soc., Providence, R.I. (1978).

    Google Scholar 

  2. L. Block and J. E. Franke, “The Chain Recurrent Set for Maps of the Interval”, Proc. Amer. Math. Soc. 87, 723–727 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  3. L. Block and J. E. Franke, “The Chain Recurrent Set, Attractors, and Explosions”, Ergod. Th. & Dynam. Sys. 5, 321–327 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Franks, “A Variation on the Poincaré-Birkhoff Theorem”, in Hamiltonian Dynamical Systems, (Edited by K.R. Meyer and D.G. Saari), Amer. Math. Soc., Providence, R.I., 111–117 (1988).

    Google Scholar 

  5. M. Hurley, “Bifurcation and Chain Recurrence”, Ergod. Th. & Dynam. Sys. 3, 231–240 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  6. D. E. Norton, “The Conley Decomposition Theorem for Maps: A Metric Approach”, Commentarii Mathematici Universitatis Sancti Pauli 44, 151–173 (1995).

    MATH  MathSciNet  Google Scholar 

  7. D. E. Norton, “Coarse-Grain Dynamics and the Conley Decomposition Theorem”, to appear in Mathematical and Computer Modelling.

    Google Scholar 

  8. D. V. Anosov, Geodesic Flows on Closed Riemannian Manifolds of Negative Curvature, Proc. Steklov Inst. Math. 90 (1967), translation by American Math. Soc. (1969).

    Google Scholar 

  9. R. Bowen, Equilibrium States and the Ergodic Theory of Axiom A Diffeomorphisms, Lecture Notes in Mathematics, No. 470, Springer-Verlag, New York (1975).

    Google Scholar 

  10. R. Bowen, On Axiom A Diffeomorphisms, CBMS Regional Conf. Ser. in Math., No. 35, Amer. Math. Soc., Providence, R.I. (1978).

    MATH  Google Scholar 

  11. C. Conley, The Gradient Structure of a Flow: I, IBM RC 3932 (#17806), July 17, 1972. Reprinted in Ergod. Th. & Dynam. Sys. 8*, 11–26 (1988).

    Google Scholar 

  12. D. E. Norton, “The Fundamental Theorem of Dynamical Systems”, Commentationes Mathematicae Universitatis Carolinae 36, 585–597 (1995).

    MATH  MathSciNet  Google Scholar 

  13. D. E. Norton, “An Example of Infinitely Many Chain Recurrence Classes For Fixed Epsilon in a Compact Space”, to appear in Questions and Answers in General Topology.

    Google Scholar 

  14. E. M. Izhikevich, “Neural Excitability, Spiking, and Bursting”, International Journal of Bifurcation and Chaos 10, 1171–1266 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  15. G. Osipenko, “Symbolic Analysis of the Chain Recurrent Trajectories of Dynamical Systems”, Differential Equations and Control Processes 4, electronic journal: http://www.neva.ru/journal (1998).

    Google Scholar 

  16. Y. Zhang, “On the Average Shadowing Property”, preprint, http://www.pku.edu.cn/academic/xb/2001/_01e510.html (2001).

    Google Scholar 

  17. S. Aytar, “The Structure Matrix of a Dynamical System”, International Conference on Mathematical Modeling and Scientific Computing, Middle East Technical University and Selcuk University, Ankara and Konya, Turkey, April 2001.

    Google Scholar 

  18. F. J. A. Jacobs and J. A. J. Metz, “On the Concept of Attractor in Community-Dynamical Processes”, preprint.

    Google Scholar 

  19. M. Dellnitz and O. Junge, “Set Oriented Numerical Methods for Dynamical Systems”, preprint, http://www.upb.de/math/~agdellnitz.

    Google Scholar 

  20. K. Mischaikow, “Topological Techniques for Efficient Rigorous Computations in Dynamics”, preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 NECSI Cambridge, Massachusetts

About this paper

Cite this paper

Norton, D.E. (2008). Epsilon-Pseudo-Orbits and Applications. In: Minai, A.A., Bar-Yam, Y. (eds) Unifying Themes in Complex Systems IV. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73849-7_8

Download citation

Publish with us

Policies and ethics