Skip to main content

The Ecology Driving Nutrient Fluxes in Forests

  • Chapter
Insects and Ecosystem Function

Part of the book series: Ecological Studies ((ECOLSTUD,volume 173))

Summary

Phytophagous insects in the canopies of forest trees play a considerable role in the cycling of nutrients and energy not only in outbreak situations, but also at endemic density levels. However, nutrient fluxes through ecosystems are often studied without a detailed knowledge of the biology of the organisms that affect them. Here, we will address the key features of aphids, adelgids and lepidopterous larvae, which affect ecosystem processes via specific life-history characteristics, fluctuations in population size and trophic relationships with other canopy organisms. For example, aphids and adelgids produce large quantities of sugary excreta and wax wool respectively, which are a source of organic carbon in the canopy. Aphids show erratic population fluctuations, while an introduced pest species such as the hemlock woolly adelgid kills its host within 10–15 years. The winter moth often shows cyclic population fluctuations spanning several years without killing the various host species. These different features in the ecology of canopy insects are expected to influence the availability of energy within the canopies of trees and subsequent processes in nutrient cycling, which eventually affect the forest floor. The availability of energy-rich excreta of canopy herbivores significantly increased the growth of epiphytic micro-organisms, the organic carbon concentrations in throughfall and decreased the nitrogen concentrations beneath trees infested by aphids and lepidoptera. Beneath adelgidinfested hemlock trees, however, significantly higher concentrations of nitrogen were found in the throughfall, which is due to a significant increase in needle N content of infested trees. Therefore, we suggest that the many facets in the biology of the herbivores need to be known to understand the direction of change in flows of nutrient beneath infested trees. Results on vertical nutrient and energy flows are reviewed from different temperate forest ecosystems, and new areas of research linking biotic processes and ecosystem functions are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber JD, Ollinger SV, Driscoll CT, Likens GE, Holmes RT, Freuder RJ, Goodale CL (2002) Inorganic nitrogen losses from a forested ecosystem in response to physical, chemical, biotic, and climatic perturbations. Ecosystems 5: 648–658

    Article  CAS  Google Scholar 

  • Baltensweiler W, Fischlin A (1988) The larch budmoth in the Alps. Dynamics of forest insect populations. Plenum Press, New York, pp 331–351

    Chapter  Google Scholar 

  • Beggs JR (2001) The ecological consequences of social wasps (Vespula spp.) invading an ecosystem that has an abundant carbohydrate resource. Biol Conserv 99: 17–28

    Article  Google Scholar 

  • Bezemer TM, Knight KJ, Newington JE, Jones TH (1999) How general are aphid responses to elevated atmospheric CO2? Ann Entomol Soc Am 92: 724–730

    Article  Google Scholar 

  • Bristow CM (1991) Why are so few aphids ant-tended? In: Huxley CR, Cutler DF (eds) Ant–plant interactions. Oxford University Press, Oxford, pp 104–119

    Google Scholar 

  • Buse A, Good JEG, Dury S, Perrins CM (1998) Effects of elevated temperature and carbon dioxide on the nutritional quality of leaves of oak (Quercus robur L.) as food for the winter moth ( Operophtera brumata L. ). Funct Ecol 12: 742–749

    Google Scholar 

  • Cannon RJC (1998) The implications of predicted climate change for insect pests in the UK, with emphasis on non-indigenous species. Global Change Biol 4: 785–796

    Article  Google Scholar 

  • Carlisle A, Brown AHF, White EJ (1966) Organic matter and nutrient elements in precipitation beneath a sessile oak ( Quercus petraea) canopy. J Ecol 54: 87–98

    Google Scholar 

  • Christensen LM, Lovett GM, Mitchell MJ, Groffman PM (2002) The fate of nitrogen in gypsy moth frass deposited to an oak forest floor. Oecologia 131: 444–452

    Article  Google Scholar 

  • Currie WS, Aber JD, McDowell WH, Boone RD, Magill AH (1996) Vertical transport of dissolved organic C and N under long-term N amendments in pine and hardwood forests. Biogeochemistry 35: 471–505

    Google Scholar 

  • Cushman JH (1991) Host-plant mediation of insect mutualisms: variable outcomes in herbivore–ant interactions. Oikos 61: 138–144

    Article  Google Scholar 

  • Cushman JH, Whitham TG (1991) Competition mediating the outcome of a mutualism–protective services of ants as a limiting resource for membracids. Am Nat 138: 851–865

    Article  Google Scholar 

  • Den Boer PJ, Reddingius J (1996) Regulation and stabilisation paradigms in population ecology. Chapman and Hall, London

    Google Scholar 

  • Dixon AFG (1998) Aphid ecology. Chapman and Hall, London

    Google Scholar 

  • Dixon AFG (2003) Climate change and phenological asynchrony. Ecol Entomol 28: 380–381

    Article  Google Scholar 

  • Dixon AFG, Agarwala BK (1999) Ladybird-induced life-history changes in aphids. Proc R Soc Lond B 266: 1549–1553

    Article  Google Scholar 

  • Eichhorn O (1969) Natürliche Verbreitungsareale und Einschleppungsgebiete der Weißtannen-Wolläuse (Gattung Dreyfusia) und die Möglichkeiten ihrer biologischen Be–kämpfung. Z Ang Entomol 63: 113–131

    Article  Google Scholar 

  • Fischer MK, Shingleton AW (2001) Host plant and ants influence the honeydew sugar composition of aphids. Funct Ecol 15: 544–550

    Article  Google Scholar 

  • Franz JM (1956) The effectiveness of predators and food in limiting gradations of Adelges (Dreyfusia) piceae (Ratz.) in Europe. Proc 10th Int Congr Entomol 4: 781–787

    Google Scholar 

  • Gaze P, Grant D, Clout MN (1983) Honeydew and its importance to birds in beech forests of South Island, New Zealand. N Z J Ecol 22: 131–142

    Google Scholar 

  • Grier CC, Vogt DJ (1990) Effects of aphid honeydew on soil nitrogen availability and net primary production in an Alnus rubra plantation in western Washington. Oikos 57: 114–118

    Article  Google Scholar 

  • Guggenberger G, Zech W (1994) Composition and dynamics of dissolved carbohydrates and lignin–degradation products in two coniferous forests, N.E. Bavaria, Germany. Soil Biol Biochem 26: 19–27

    Google Scholar 

  • Haukioja E (2003) Putting the insect into the birch–insect interaction. Oecologia 136: 161–168

    Article  PubMed  Google Scholar 

  • Hollinger DY (1986) Herbivory and the cycling of nitrogen and phosphorus in isolated California oak trees. Oecologia 70: 291–297

    Article  Google Scholar 

  • Honek A (1991) Environment stress, plant quality and abundance of cereal aphids (Hom., Aphididae) on winter wheat. J Appl Entomol 112: 65–70

    Article  Google Scholar 

  • Hunter MD (2001) Insect population dynamics meets ecosystem ecology: effects of herbivory on soil nutrient dynamics. Agric Forest Entomol 3: 77–84

    Article  Google Scholar 

  • Hunter MD, Varley GC, Gradwell GR (1997) Estimating the relative roles of top-down and bottom-up forces on insect herbivore populations: a classic study revisited. Proc Natl Acad Sci Am 94: 9176–9181

    Article  CAS  Google Scholar 

  • Hunter MD, Linnen CR, Reynolds BC (2003) Effects of endemic densities of canopy herbivores on nutrient dynamics along a gradient in elevation in the southern Appalachians. Pedobiologia 47: 231–244

    Article  Google Scholar 

  • Jenkins JC, Aber JD, Canham CD (1999) Hemlock woolly adelgid impacts on community structure and N cycling rates in eastern hemlock forests. Can J For Res 29: 630–645

    Article  Google Scholar 

  • Jones CG, Lawton JH (1995) Linking species and ecosystems. Chapman and Hall, New York

    Book  Google Scholar 

  • Karafiat H, Franz JM (1956) Studien zur Populationsdynamik der Tannenstammlaus Adelges (Dreyfusia) piceae ( Ratz. ). Zool Jahrb Syst 84: 467–504

    Google Scholar 

  • Kidd NAC (1990) The population dynamics of the large pine aphid, Cinara pinea (Mordv.) II. Simulation of field populations. Res Pop Ecol 32: 209–226

    Article  Google Scholar 

  • Kindlmann P, Dixon AFG (1996) Population dynamics of a tree dwelling aphid: individuals to populations. Ecol Mod 89: 23–30

    Article  Google Scholar 

  • Kindlmann P, Stadler B (2004) Linking aphid abundance and throughfall chemistry in a spruce forest. Ecol Mod (in press)

    Google Scholar 

  • Klemola T, Hanhimäki S, Ruohomäki K, Senn J, Tanhuanpää M, Kaitaniemi P, Ranta H, Haukioja E (2003) Performance of the cyclic autumnal moth, Epirrita autumnata, in relation to birch mast seeding. Oecologia 135: 34–361

    Google Scholar 

  • Koricheva J, Larsson S, Haukioja E (1988) Insect performance on experimentally stressed woody plants: a meta-analysis. Annu Rev Entomol 43: 195–216

    Article  Google Scholar 

  • Kunert G, Weisser WW (2003) The interplay between density-and trait mediated effects in predator–prey interactions: a case study in aphid wing polymorphism. Oecologia 135: 304–312

    Article  PubMed  Google Scholar 

  • Lawton JH (2000) Community ecology in a changing world. International Ecology Institute, Oldendorf/Luhe

    Google Scholar 

  • Liebhold AM, Elkinton JS, Williams D, Muzika RM (2000) What causes outbreaks of gypsy moth in North America? Popul Ecol 42: 257–266

    Article  Google Scholar 

  • Likens GE, Bormann FH (1995) Biogeochemistry of a forested ecosystem, 2nd edn. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Loehle C, Pechmann JK (1988) Evolution: the missing ingredient in system ecology. Am Nat 132: 884–899

    Article  Google Scholar 

  • Loreau M (200 1) Linking community, evolutionary and ecosystem ecology: another perspective on plant–herbivore interactions. Belg J Zool 131:3–9

    Google Scholar 

  • Lovett GM, Ruesink AE (1995) Carbon and nitrogen mineralization from decomposing gypsy moth frass. Oecologia 104: 133–138

    Article  Google Scholar 

  • Lovett GM, Reiners WA, Olson RK (1989) Factors controlling throughfall chemistry in a balsam fir canopy–a modeling approach. Biogeochemistry 8: 239–264

    Article  CAS  Google Scholar 

  • Lovett GM, Nolan SS, Driscoll CT, Fahey TJ (1996) Factors regulating throughfall flux in a new New-Hampshire forested landscape. Can J For Res 26: 2134–2144

    Article  Google Scholar 

  • Ludwig D, Jones DD, Holling CS (1978) Qualitative analysis of insect outbreak systems–spruce budworm and forest. J Anim Ecol 47: 315–332

    Article  Google Scholar 

  • Matzner E (1988) Der Stoffumsatz zweier Waldökosysteme im Solling. Ber Forschungszentrums Waldökosysteme/Waldsterben Univ Göttingen A40: 1–217

    Google Scholar 

  • McClure MS (1983) Reproduction and adaptation of exotic hemlock scales (Homoptera, Diaspididae) on their new and native hosts. Environ Entomol 12: 1811–1815

    Article  Google Scholar 

  • McClure MS (1989) Evidence of a polymorphic life-cycle in the hemlock woolly adelgid, Adelges tsugae (Homoptera, Adelgidae). Ann Entomol Soc Am 82: 50–54

    Article  Google Scholar 

  • McClure MS (1991) Density-dependent feedback and population-cycles in Adelges tsugae (Homoptera, Adelgidae) on Tsuga canadensis. Environ Entomol 20: 258–264

    Article  Google Scholar 

  • McClure MS, Salom SM, Shields KS (2001) Hemlock woolly adelgid. Forest Health Technology Enterprise Team, Morgantown, pp 1–14

    Google Scholar 

  • McDowell WH, Likens G (1988) Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook valley. Ecol Monogr 58: 177–195

    Article  Google Scholar 

  • Michalzik B, Matzner E (1999) Dynamics of dissolved organic nitrogen and carbon in a central European Norway spruce ecosystem. Eur J Soil Sci 50: 579–590

    Article  Google Scholar 

  • Michalzik B, Stadler B (2000) Effects of phytophagous insects on soil solution chemistry: herbivores as switches for the nutrient dynamics in the soil. Basic Appl Ecol 1: 117–123

    Article  CAS  Google Scholar 

  • Michalzik B, Stadler B (2004) Canopy herbivores and organic matter fluxes: a key process in understanding soil organic matter dynamics. Geoderma (in press)

    Google Scholar 

  • Michalzik B, Kalbitz K, Park JH, Solinger S, Matzner E (2001) Fluxes and concentrations of dissolved organic carbon and nitrogen–a synthesis for temperate forests. Biogeochemistry 52: 173–205

    Article  Google Scholar 

  • Müller T, Müller M, Behrendt U, Stadler B (2004) Diversity of culturable phyllosphere bacteria on beech and oak: effects of lepidopterous larvae. Microbiol Res 158: 291–297

    Article  Google Scholar 

  • Orwig DA, Foster DR (1998) Forest response to the introduced hemlock woolly adelgid in southern New England, USA. J Torr Bot Soc 125: 60–73

    Google Scholar 

  • Pedersen LB, Bille-Hansen J (1995) Effects of nitrogen load to the forest floor in sitka spruce stands ( Picea sitchensis) as affected by difference in deposition and spruce aphid infestations. Water Air Soil Pollut 85: 1173–1178

    Google Scholar 

  • Piirainen S, Finer L, Starr M (1998) Canopy and soil retention of nitrogen deposition in a mixed boreal forest in eastern Finland. Water Air Soil Pollut 105: 165–174

    Article  CAS  Google Scholar 

  • Prescott CE (2002) The influence of the forest canopy on nutrient cycling. Tree Physiol 22: 1193–1200

    Article  CAS  PubMed  Google Scholar 

  • Pschorn-Walcher H, Zwölfer H (1958) Preliminary investigations on the Dreyfusia ( Adelges) populations, living on the trunk of the silver fir. Z Angew Entomol 42: 241–277

    Google Scholar 

  • Qualls RG, Haines BL (1991) Fluxes of dissolved organic nutrients and humic substances in a deciduous forest. Ecology 72: 254–266

    Article  Google Scholar 

  • Reynolds BC, Hunter MD (2001) Responses of soil respiration, soil nutrients, and litter decomposition to inputs from canopy herbivores. Soil Biol Biochem 33: 1641–1652

    Article  CAS  Google Scholar 

  • Royama T (1984) Population-dynamics of the spruce budworm Choristoneura fumiferana. Ecol Monogr 54: 429–462

    Article  Google Scholar 

  • Royama T (1996) Analytical population dynamics. Chapman and Hall, London

    Google Scholar 

  • Scheurer S (1964) Zur Biologie einiger Fichten bewohnender Lachnidenarten (Homoptera, Aphidina). Z Angew Entomol 53: 153–178

    Article  Google Scholar 

  • Schowalter TD (2000) Insect ecology: an ecosystem approach. Academic Press, San Diego

    Google Scholar 

  • Schulze ED (2000) The carbon and nitrogen cycle of forest ecosystems. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Seastedt TR, Crossley JDA (1984) The influence of arthropods on ecosystems. BioScience 34: 157–161

    Article  Google Scholar 

  • Seastedt TR, Crossley DA, Hargrove WW (1983) The effects of low-level consumption by canopy arthropods on the growth and nutrient dynamics of black locust and red maple trees in the southern Appalachians. Ecology 64: 1040–1048

    Article  Google Scholar 

  • Selås V (1997) Cyclic population fluctuations of herbivores as an effect of cyclic seed cropping of plants: the mast depression hypothesis. Oikos 80: 257–268

    Article  Google Scholar 

  • Stadler B (1995) Adaptive allocation of resources and life-history trade-offs in aphids relative to plant quality. Oecologia 102: 246–254

    Article  Google Scholar 

  • Stadler B, Müller T (1996) Aphid honeydew and its effect on the phyllosphere microflora of Picea abies ( L) Karst. Oecologia 108: 771–776

    Google Scholar 

  • Stadler B, Müller T (2000) Effects of aphids and moth caterpillars on epiphytic microorganisms in canopies of forest trees. Can J For Res 30: 631–638

    Article  Google Scholar 

  • Stadler B, Müller T, Sheppard L, Crossley A (2001a) Effects of Elatobium abietinum on nutrient fluxes in sitka spruce canopies receiving elevated nitrogen and sulphur deposition. Agric For Entomol 3: 253–261

    Article  Google Scholar 

  • Stadler B, Solinger S, Michalzik B (2001b) Insect herbivores and the nutrient flow from the canopy to the soil in coniferous and deciduous forests. Oecologia 126: 104–113

    Article  Google Scholar 

  • Stadler B, Dixon AFG, Kindlmann P (2002) Relative fitness of aphids: effects of plant quality and ants. Ecol Lett 5: 216–222

    Article  Google Scholar 

  • Stadler B, Kindlmann P, Smilauer P, Fiedler K (2003) A comparative analysis of morphological and ecological characters of European aphids and lycaenids in relation to ant attendance. Oecologia 135: 422–430

    Article  PubMed  Google Scholar 

  • Stadler B, Müller T, Orwig DA, Cobb RC (2004) Hemlock woolly adelgid in New England forests: canopy impacts transforming ecosystem processes and landscapes in New England forests. Ecosystems (in press)

    Google Scholar 

  • Sudd JH, Sudd ME (1985) Seasonal changes in the response of wood ants ( Formica lugubris) to sucrose baits. Ecol Entomol 10: 89–97

    Google Scholar 

  • Swank WT, Waide JB, Crossley JDA, Todd RL (1981) Insect defoliation enhances nitrate export from forest ecosystems. Oecologia 51: 297–299

    Article  Google Scholar 

  • Tukey HB Jr (1970) The leaching of substances from plants. Annu Rev Plant Physiol 21: 305–324

    Article  CAS  Google Scholar 

  • Varley GC, Gradwell GR (1970) Recent advances in insect population dynamics. Annu Rev Entomol 15: 1–24

    Article  Google Scholar 

  • Visser ME, Holleman LJM (2001) Warmer springs disrupt the synchrony of oak and winter moth phenology. Proc R Soc Lond B 268: 289–294

    Article  CAS  Google Scholar 

  • Watt AD, McFarlane AM (2002) Will climate change have a different impact on different trophic levels? Phenological development of winter moth Operophtera brumata and its host plants. Ecol Entomol 27: 254–256

    Article  Google Scholar 

  • Wiens JA (1995) Landscape mosaics and ecological theory. Chapman and Hall, London

    Book  Google Scholar 

  • Wiens JA, Stenseth NC, van Horne B, Ims RA (1993) Ecological mechanisms and landscape ecology. Oikos 66: 369–380

    Article  Google Scholar 

  • Williams DW, Liebhold AM (1995) Herbivorous insects and global change: potential changes in the spatial distribution of forest defoliator outbreaks. J Biogeogr 22: 665–671

    Article  Google Scholar 

  • Williams DW, Liebhold AM (2000) Spatial scale and the detection of density dependence in spruce budworm outbreaks in eastern North America. Oecologia 124: 544–552

    Article  Google Scholar 

  • Wu J, Loucks OL (1995) From balancing of nature to hierarchical patch dynamics: a paradigm shift in ecology. Q Rev Biol 70: 439–466

    Article  Google Scholar 

  • Yao I, Akimoto S (2001) Ant attendance changes the sugar composition of the honeydew of the drepanosiphid aphid Tuberculatus quercicola. Oecologia 128: 36–43

    Article  Google Scholar 

  • Yao I,Akimoto SI (2002) Flexibility in the composition and concentration of amino acids in honeydew of the drepanosiphid aphid Tuberculatus quercicola. Ecol Entomol 27: 745–752

    Google Scholar 

  • Zhang Q-B,Alfaro RI (2003) Spatial synchrony of the two-year cycle budworm outbreaks in central British Columbia, Canada. Oikos 102: 146–154

    Google Scholar 

  • Zoebelein G (1954) Versuche zur Feststellung des Honigtauertrages von Fichtenbeständen mit Hilfe von Waldameisen. Z Angew Entomol 36: 358–362

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stadler, B., Mühlenberg, E., Michalzik, B. (2008). The Ecology Driving Nutrient Fluxes in Forests. In: Weisser, W.W., Siemann, E. (eds) Insects and Ecosystem Function. Ecological Studies, vol 173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74004-9_11

Download citation

Publish with us

Policies and ethics