Skip to main content

Abstract

Consider a scenario where one desires to simulate the execution of some graph algorithm on huge random G(N,p) graphs, where N = 2n vertices are fixed and each edge independently appears with probability p = p n . Sampling and storing these graphs is infeasible, yet Goldreich et al.  [7], and Naor et al.  [12] considered emulating dense G(N,p) graphs by efficiently computable ‘random looking’ graphs. We emulate sparse G(N,p) graphs - including the densities of the G(N,p) threshold for containing a giant component (p ~1 / N), and for achieving connectivity (p′ ~ln N / N). The reasonable model for accessing sparse graphs is neighborhood queries where on query-vertex v, the entire neighbor-set Γ(v) is efficiently retrieved (without sequentially deciding adjacency for each vertex). Our emulation is faithful in the sense that our graphs are indistinguishable from G(N,p) graphs from the view of any efficient algorithm that inspects the graph by neighborhood queries of its choice. In particular, the G(N,p) degree sequence is sufficiently well approximated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Spencer, J.: The Probabilistic Method. John Wiley, New York (1992)

    MATH  Google Scholar 

  2. Bollobás, B.: A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. Preprint Series, Matematisk Institut, Aarhus Universitet (1979)

    Google Scholar 

  3. Erdös, P., Rényi, A.: On random graphs I. Publicationes Mathematicae 6, 290–297 (1959)

    MathSciNet  MATH  Google Scholar 

  4. Erdös, P., Rényi, A.: On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences 5, 17–61 (1960)

    MathSciNet  MATH  Google Scholar 

  5. Gilbert, A., Guha, S., Indyk, P., Kotidis, Y., Muthukrishnan, S., Strauss, M.: Fast, Small-Space Algorithms for Approximate Histogram Maintenance. In: 34’th annual ACM symposium on Theory of computing, pp. 389–398 (2002)

    Google Scholar 

  6. Goldreich, O., Goldwasser, S., Micali, S.: How to Construct Random Functions. Journal of the ACM 33(4), 276–288 (1985)

    MathSciNet  MATH  Google Scholar 

  7. Goldreich, O., Goldwasser, S., Nussboim, A.: On the Implementation of Huge Random Objects. In: proc. 44’th FOCS IEEE Symp. on Foundations of Computer Science, pp. 68–79 (2003)

    Google Scholar 

  8. Goldreich, O., Ron, D.: Property Testing in Bounded Degree Graphs. In: Proceedings of the 29‘th ACM Symposium on Theory of Computing, pp. 406–415 (1997)

    Google Scholar 

  9. Kaplan, E., Naor, M., Reingold, O.: Derandomized Constructions of k-Wise (Almost) Independent Permutations. In: APPROX-RANDOM 2005, 354–365 (2005)

    Google Scholar 

  10. Luby, M., Rackoff, C.: How to Construct Pseudo-Random Permutations from Pseudo-Random Functions. SIAM J. on Computing 17, 373–386 (1998)

    Article  MATH  Google Scholar 

  11. Naor, M., Nussboim, A.: Implementing Huge Sparse Random Graphs, available at http://www.wisdom.weizmann.ac.il/~asafn/PAPERS/sparseGnp.ps

  12. Naor, M., Nussboim, A., Tromer, E.: Efficiently Constructible Huge Graphs that Preserve First Order Properties of Random Graphs. In: Proceedings of the 2’nd Theory of Cryptography Conference, pp. 66–85 (2005)

    Google Scholar 

  13. Naor, M., Reingold, O.: Constructing Pseudo-Random Permutations with a Prescribed Cyclic Structure. Journal of Crypto. 15(2), 97–102 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Naor, M., Nussboim, A. (2007). Implementing Huge Sparse Random Graphs. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2007 2007. Lecture Notes in Computer Science, vol 4627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74208-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74208-1_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74207-4

  • Online ISBN: 978-3-540-74208-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics