Skip to main content

‘Meta’Approaches to Protein Structure Prediction

  • Chapter
Practical Bioinformatics

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 15))

The computational assignment of three-dimensional structures to newly determined protein sequences is becoming an increasingly important element in experimental structure determination and in structural genomics (Fischer et al. 2001a). In particular, fold-recognition methods aim to predict approximate three-dimensional (3D) models for proteins bearing no evident sequence similarity to any protein of known structure (see the review by Cymerman et al., this Vol.). The assignment is carried out by searching a library of known structures (usually obtained from the Protein Data Bank) for a compatible fold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandrov NN, Nussinov R, Zimmer RM (1996) Fast protein fold recognition via sequence to structure alignment and contact capacity potentials. Pac Symp Biocomput, pp 53-72

    Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389-3402

    Article  CAS  PubMed  Google Scholar 

  • Bryant SH, Lawrence CE (1993) An empirical energy function for threading protein sequence through the folding motif. Proteins 16:92-112

    Article  CAS  PubMed  Google Scholar 

  • Bujnicki JM, Elofsson A, Fischer D, Rychlewski L (2001a) LiveBench-1: continuous benchmarking of protein structure prediction servers. Protein Sci 10:352-361

    Article  CAS  PubMed  Google Scholar 

  • Bujnicki JM, Elofsson A, Fischer D, Rychlewski L (2001b) LiveBench-2: Large-scale automated evaluation of protein structure prediction servers. Proteins 45:184-191

    Article  Google Scholar 

  • Bystroff C, Baker D (1998) Prediction of local structure in proteins using a library of sequence-structure motifs. J Mol Biol 281:565-577

    Article  CAS  PubMed  Google Scholar 

  • Cuff JA, Barton GJ (2000) Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 40:502-511

    Article  CAS  PubMed  Google Scholar 

  • Cuff JA, Clamp ME, Siddiqui AS, Finlay M, Barton GJ (1998) JPred: a consensus secondary structure prediction server. Bioinformatics 14:892-893

    Article  CAS  PubMed  Google Scholar 

  • Di Francesco V, Geetha V, Garnier J, Munson PJ (1997) Fold recognition using predicted secondary structure sequences and hidden Markov models of protein folds. Proteins (Suppl 1):123-128

    Google Scholar 

  • Fischer D (2000) Hybrid fold recognition: combining sequence derived properties with evolutionary information. Pac Symp Biocomput, pp 119-130

    Google Scholar 

  • Fischer D (2003) 3D-SHOTGUN: a novel, cooperative, fold-recognition meta-predictor. Proteins (in press)

    Google Scholar 

  • Fischer D, Baker D, Moult J (2001a) We need both computer models and experiments. Nature 409:558

    Article  CAS  PubMed  Google Scholar 

  • Fischer D, Barrett C, Bryson K, Elofsson A, Godzik A, Jones D, Karplus KJ, Kelley LA, Mac-Callum RM, Pawlowski K, Rost B, Rychlewski L, Sternberg M (1999) CAFASP-1: critical assessment of fully automated structure prediction methods. Proteins (Suppl 3):209-217

    Google Scholar 

  • Fischer D, Elofsson A, Rychlewski L, Pazos F,Valencia A, Rost B, Ortiz AR, Dunbrack RL Jr (2001b) CAFASP2: The second critical assessment of fully automated structure prediction methods. Proteins 45 (Suppl 5):171-183

    Article  Google Scholar 

  • Ginalski K, Elofsson A, Fischer D, Rychlewski L (2003) 3D-Jury: a simple approach to improve protein structure predictions. Bioinformatics 19:1015-1018

    Article  CAS  PubMed  Google Scholar 

  • Godzik A, Kolinski A, Skolnick J (1992) Topology fingerprint approach to the inverse protein folding problem. J Mol Biol 227:227-238

    Article  CAS  PubMed  Google Scholar 

  • Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195-202

    Article  CAS  PubMed  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) A new approach to protein fold recognition. Nature 358:86-89

    Article  CAS  PubMed  Google Scholar 

  • Juan D, Grana O, Pazos F, Fariselli P, Casadio R, Valencia A (2003) A neural network approach to evaluate fold recognition results. Proteins 50:600-608

    Article  CAS  PubMed  Google Scholar 

  • Karplus K, Barrett C, Cline M, Diekhans M, Grate L, Hughey R (1999) Predicting protein structure using only sequence information. Proteins (Suppl 3):121-125

    Google Scholar 

  • Karplus K, Barrett C, Hughey R (1998) Hidden Markov models for detecting remote protein homologies. Bioinformatics 14:846-856

    Article  CAS  PubMed  Google Scholar 

  • Kelley LA, McCallum CM, Sternberg MJ (2000) Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol 299:501-522

    Article  Google Scholar 

  • Kihara D, Lu H, Kolinski A, Skolnick J (2001) TOUCHSTONE: an ab initio protein structure prediction method that uses threading-based tertiary restraints. Proc Natl Acad Sci USA 98:10125-10130

    Article  CAS  PubMed  Google Scholar 

  • Kolinski A, Betancourt MR, Kihara D, Rotkiewicz P, Skolnick J (2001) Generalized comparative modeling (GENECOMP): a combination of sequence comparison,threading, and lattice modeling for protein structure prediction and refinement. Proteins 44:133-149

    Article  CAS  PubMed  Google Scholar 

  • Kosinski J, Cymerman IA, Feder M, Kurowski MA, Sasin JM, Bujnicki JM (2003) A ‘Frankenstein’s monster’ approach to comparative modeling: merging the finest fragments of fold-recognition models and iterative model refinement aided by 3D structure evaluation. Proteins (in press)

    Google Scholar 

  • Kurowski MA, Bujnicki JM (2003) GeneSilico protein structure prediction meta-server. Nucleic Acids Res 31:3305-3307

    Article  CAS  PubMed  Google Scholar 

  • Lundstrom J, Rychlewski L, Bujnicki JM, Elofsson A (2001) Pcons: A neural-network-based consensus predictor that improves fold recognition. Protein Sci 10:2354-2362

    Article  CAS  PubMed  Google Scholar 

  • Marr D (1982) Vision. Freeman, New York

    Google Scholar 

  • Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291-325

    Article  CAS  PubMed  Google Scholar 

  • Moult J, Fidelis K, Zemla A, Hubbard T (2001) Critical assessment of methods of protein structure prediction (CASP): round IV. Proteins (Suppl 5):2-7

    Google Scholar 

  • Moult J,Hubbard T,Bryant SH,Fidelis K,Pedersen JT (1997) Critical assessment of methods of protein structure prediction (CASP): round II. Proteins (Suppl 1):2-6

    Google Scholar 

  • Moult J, Hubbard T, Fidelis K, Pedersen JT (1999) Critical assessment of methods of protein structure prediction (CASP): round III. Proteins (Suppl 3):2-6

    Google Scholar 

  • Moult J, Pedersen JT, Judson R, Fidelis K (1995) A large-scale experiment to assess protein structure prediction methods. Proteins 23:ii-iv

    Google Scholar 

  • Ouzounis C, Sander C, Scharf M, Schneider R (1993) Prediction of protein structure by evaluation of sequence-structure fitness. Aligning sequences to contact profiles derived from three-dimensional structures. J Mol Biol 232:805-825

    Article  CAS  PubMed  Google Scholar 

  • Rost B(1995) TOPITS: threading one-dimensional predictions into three-dimensional structures. ISMB 3:314-321

    CAS  PubMed  Google Scholar 

  • Rychlewski L, Jaroszewski L, Li W, Godzik A (2000) Comparison of sequence profiles. Strategies for structural predictions using sequence information. Protein Sci 9:232-241

    CAS  PubMed  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779-815

    Article  CAS  PubMed  Google Scholar 

  • Selbig J, Mevissen T, Lengauer T (1999) Decision tree-based formation of consensus protein secondary structure prediction. Bioinformatics 15:1039-1046

    Article  CAS  PubMed  Google Scholar 

  • Shi J,Blundell TL,Mizuguchi K (2001) Fugue: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol 310:243-257

    Article  CAS  PubMed  Google Scholar 

  • Siew N, Elofsson A, Rychlewski L, Fischer D (2000) MaxSub: an automated measure for the assessment of protein structure prediction quality. Bioinformatics 16:776-785

    Article  CAS  PubMed  Google Scholar 

  • Simons KT, Kooperberg C, Huang E, Baker D (1997) Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol 268:209-225

    Article  CAS  PubMed  Google Scholar 

  • Simons KT, Ruczinski I, Kooperberg C, Fox BA, Bystroff C, Baker D.(1999) Improved recognition of native-like protein structures using a combination of sequence-dependent and sequence-independent features of proteins. Proteins 34:82-95

    Article  CAS  PubMed  Google Scholar 

  • Sippl MJ, Weitckus S (1992) Detection of native-like models for amino acid sequences of unknown three-dimensional structure in a data base of known protein conformations. Proteins 13:258-271

    Article  CAS  PubMed  Google Scholar 

  • Tramontano A (2003) Of men and machines. Nat Struct Biol 10:87-90

    Article  CAS  PubMed  Google Scholar 

  • Wallner B, Elofsson A (2003) Can correct protein models be identified? Protein Sci 12:1073-1086

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bujnicki, J.M., Fischer, D. (2008). ‘Meta’Approaches to Protein Structure Prediction. In: Bujnicki, J.M. (eds) Practical Bioinformatics. Nucleic Acids and Molecular Biology, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74268-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74268-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74267-8

  • Online ISBN: 978-3-540-74268-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics