Skip to main content

Non Unitary Joint Block Diagonalization of Complex Matrices Using a Gradient Approach

  • Conference paper
Independent Component Analysis and Signal Separation (ICA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4666))

Abstract

This paper addresses the problem of the non-unitary approximate joint block diagonalization (NU −  JBD) of matrices. Such a problem occurs in various fields of applications among which blind separation of convolutive mixtures of sources and wide-band signals array processing. We present a new algorithm for the non-unitary joint block-diagonalization of complex matrices based on a gradient-descent algorithm whereby the optimal step size is computed algebraically at each iteration as the rooting of a 3rd-degree polynomial. Computer simulations are provided in order to illustrate the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belouchrani, A., Abed-Meraïm, K., Amin, M., Zoubir, A.: Joint anti-diagonalization for blind source separation. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2001), Salt Lake City, Utah (May 2001)

    Google Scholar 

  2. Belouchrani, A., Abed-Meraïm, K., Cardoso, J.-F., Moulines, E.: A blind source separation technique using second order statistics. IEEE Transactions on Signal Processing 45, 434–444 (1997)

    Article  Google Scholar 

  3. Bousbiah-Salah, H., Belouchrani, A., Abed-Meraïm, K.: Blind separation of non stationary sources using joint block diagonalization. In: Proc. IEEE Workshop on Statistical Signal Processing, pp. 448–451 (2001)

    Google Scholar 

  4. Cardoso, J.-F., Souloumiac, A.: Blind beamforming for non Gaussian signals. IEEE Proceedings-F 40, 362–370 (1993)

    Google Scholar 

  5. Comon, P.: Independant component analysis, a new concept? Signal Processing 36, 287–314 (1994)

    Article  MATH  Google Scholar 

  6. Dégerine, S.: Sur la diagonalisation conjointe approchée par un critère des moindres carrés. In: Proc. 18ème Colloque GRETSI, Toulouse, Septembre 2001, pp. 311–314 (2001)

    Google Scholar 

  7. DeLathauwer, L.: Signal processing based on multilinear algebra. PhD Thesis, Université Catholique de Leuven, Belgique (September 1997)

    Google Scholar 

  8. DeLathauwer, L., Févotte, C., De Moor, B., Vandewalle, J.: Jacobi algorithm for joint block diagonalization in blind identification. In: 23rd Symposium on Information Theory in the Benelux, Louvain-la-Neuve, Belgium (May 2002)

    Google Scholar 

  9. Fadaili, E.-M., Thirion-Moreau, N., Moreau, E.: Algorithme de zéro-diagonalisation conjointe pour la séparation de sources déterministes. In: dans les Proc. du 20ème colloque GRETSI, Louvain-La-Neuve, Belgique, Septembre 2005, pp. 981–984 (2005)

    Google Scholar 

  10. Fadaili, E.-M., Thirion-Moreau, N., Moreau, E.: Non orthogonal joint diagonalization/zero-diagonalization for source separation based on time-frequency distributions. IEEE Transactions on Signal Processing, 55(4) (to appear, April 2007)

    Google Scholar 

  11. Joho, M.: A systematic approach to adaptive algorithms for multichannel system identification, inverse modeling and blind identification. PHD Thesis, Swiss Federal Institute of Technology, Zürich (December 2000)

    Google Scholar 

  12. Moreau, E.: A generalization of joint-diagonalization criteria for source separation. IEEE Trans. Signal Processing 49(3), 530–541 (2001)

    Article  MathSciNet  Google Scholar 

  13. Petersen, K.B., Pedersen, M.S.: The matrix cookbook (January 5, 2005)

    Google Scholar 

  14. Pham, D.-T.: Joint approximate diagonalization of positive definite matrices. SIAM Journal on Matrix Analysis and Applications 22(4), 1136–1152 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Yeredor, A.: Non-orthogonal joint diagonalization in the least square sense with application in blind source separation. IEEE Transactions on Signal Processing 50(7), 1545–1553 (2002)

    Article  MathSciNet  Google Scholar 

  16. Yeredor, A., Ziehe, A., Muller, K.R.: Approximate joint diagonalization using a natural gradient approach. In: Puntonet, C.G., Prieto, A.G. (eds.) ICA 2004. LNCS, vol. 3195, pp. 89–96. Springer, Heidelberg (2004)

    Google Scholar 

  17. Ziehe, A., Laskov, P., Nolte, G.G., Müller, K.-R.: A fast algorithm for joint diagonalization with non-orthogonal transformations and its application to blind source separation. Journal of Machine Learning Research, (5), 801–818 (July 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mike E. Davies Christopher J. James Samer A. Abdallah Mark D Plumbley

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ghennioui, H., Thirion-Moreau, N., Moreau, E., Adib, A., Aboutajdine, D. (2007). Non Unitary Joint Block Diagonalization of Complex Matrices Using a Gradient Approach. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds) Independent Component Analysis and Signal Separation. ICA 2007. Lecture Notes in Computer Science, vol 4666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74494-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74494-8_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74493-1

  • Online ISBN: 978-3-540-74494-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics