Skip to main content

Silicon: Child and Progenitor of Revolution

  • Chapter
Into the Nano Era

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 106))

Abstract

Antoine Lavoisier, the pioneering French chemist who (together with Joseph Priestley in England) identified oxygen as an element and gave it its name, in 1789 concluded that quartz was probably a compound with an as-yet undiscovered but presumably extremely common element. That was also the year in which the French Revolution broke out. Five years later, the Jacobins accused Lavoisier of offences against the people and cut off his head, thereby nearly cutting off the new chemistry. It was not until 1824 that Jöns Berzelius in Sweden succeeded in confirming Lavoisier’s speculation by isolating silicon. Argument at once broke out among the scientific elite as to whether the newly found element was a metal or an insulator. It took more than a century to settle that disagreement decisively: As so often, when all-or-nothing alternatives are fiercely argued, the truth turned out to be neither all nor nothing.

R. W. Cahn is deceased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Hoyle, Mon. Not. R. Astron. Soc. 106, 343 (1946)

    ADS  CAS  Google Scholar 

  2. F. Hoyle, E.M. Burbidge, G.R. Burbidge, W. Fowler, Rev. Mod. Phys. 29, 547 (1957)

    Article  ADS  Google Scholar 

  3. K. Lark-Horowitz, in Proc. Conf. Semiconducting Materials, Reading, UK (Butterworth, London, 1951), p. 47

    Google Scholar 

  4. J.G. Wilkes, in Processing of Semiconductors, ed. by K.A. Jackson. Materials Science and Technology (ed. by R.W. Cahn et al.), vol. 16 (VCH, Weinheim, 1996), p. 19

    Google Scholar 

  5. T.D. Yensen, Elec. J. (March 1921)

    Google Scholar 

  6. J.L. Walter, in The Sorby Centennial Symposium on the History of Metallurgy, ed. by C.S. Smith (Gordon and Breach, New York, 1965), p. 519

    Google Scholar 

  7. F. Seitz, N.G. Einspruch, Electronic Genie: The Tangled History of Silicon (University of Illinois Press, Urbana, 1998)

    Google Scholar 

  8. A.H. Wilson, Proc. R. Soc. Lond. A 133, 458 (1931)

    Article  MATH  ADS  CAS  Google Scholar 

  9. A.H. Wilson, Proc. R. Soc. Lond. A 134, 277 (1931)

    Article  MATH  ADS  CAS  Google Scholar 

  10. A.H. Wilson, Proc. R. Soc. Lond. A 371, 39 (1980)

    Article  ADS  Google Scholar 

  11. A.H. Wilson, Semi-conductors and Metals (Cambridge University Press, Cambridge, 1939)

    Google Scholar 

  12. J.H. Scaff, Metall. Trans. 1, 561 (1970)

    CAS  Google Scholar 

  13. S. Mahajan, K.S. Sree Harsha, Principles of Growth and Processing of Semiconductors (McGraw-Hill, Boston, 1999)

    Google Scholar 

  14. S. Mahajan, Prog. Mat. Sci. 49, 487 (2004)

    Article  CAS  Google Scholar 

  15. M. Riordan, L. Hoddeson, Crystal Fire: The Birth of the Information Age (W.W. Norton, New York, 1997)

    Google Scholar 

  16. S.M. Spearing, Acta Mater. 48, 179 (2000)

    Article  CAS  Google Scholar 

  17. A.P. London, A.A. Ayón, A.H. Epstein, S.M. Spearing, T. Harrison, Y. Peles, J.L. Kerrebrrock, Sens. Actuators A 92, 351 (2001)

    Article  Google Scholar 

  18. K.-S. Chen, S.M. Spearing, N.N. Nemeth, AIAA J. 39, 720 (2001)

    Article  ADS  Google Scholar 

  19. K.-S. Chen, A. Ayon, S.M. Spearing, J. Am. Ceram. Soc. 83, 1476 (2000)

    Article  CAS  Google Scholar 

  20. W. Parrish, Acta Cryst. 13, 838 (1960)

    Article  Google Scholar 

  21. M. Hart, R.J. Cernik, W. Parrish, H. Toraya, J. Appl. Cryst. 23, 286 (1990)

    Article  CAS  Google Scholar 

  22. U. Bonse, M. Hart, Appl. Phys. Lett. 6, 155 (1965)

    Article  ADS  Google Scholar 

  23. M. Hart, Brit. J. Appl. Phys. (J. Phys. D) Ser. 21, 1405 (1968)

    ADS  Google Scholar 

  24. I. Robinson, Phys. World 17, 31 (May 2004)

    Google Scholar 

  25. I.M. Mills, P.J. Mohr, T.J. Quinn, B.N. Tayloer, E.R. Williams, Metrologia 42, 71 (2005)

    Article  ADS  Google Scholar 

  26. R.S. Davis, Philos. Trans. R. Soc. Lond. A 363, 2249 (2005)

    Article  ADS  CAS  Google Scholar 

  27. P. Becker, H. Bettin, H.-U. Danzebrink, M. Gläser, U. Kuetgens, A. Nicolaus, D. Schiel, P. de Bièvre, S. Valkiers, P. Taylor, Metrologia 40, 271 (2003)

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cahn, R.W. (2009). Silicon: Child and Progenitor of Revolution. In: Huff, H.R. (eds) Into the Nano Era. Springer Series in Materials Science, vol 106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74559-4_1

Download citation

Publish with us

Policies and ethics