Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Magnetic particle imaging (MPI) is a quantitative imaging method that uses the nonlinear re-magnetization behavior of ferromagnetic nanoparticles to determine their local concentration. Superparamagnetic iron oxide (SPIO) particles represent such suitable nanoparticles. SPIOs are readily available as clinically approved contrast agents for liver examinations in magnetic resonance imaging (MRI), and usually administered into the bloodstream via intravenous injection. Starting from a brief overview of the history of the discovery and ongoing research on MPI in Sect. 24.2, Sect. 24.3 introduces the technical concepts of MPI. Section 24. 4 will explain how to get to actual images, once data has been acquired. Section 24.5 describes alternative system designs next to traditional, symmetric geometries commonly used for medical imaging devices, and other uses of magnetic particle imaging technology, like spectroscopy. A possible combination of MPI with magnetic resonance tomography (MRT) for hybrid MPI/MRT systems is introduced in Sect.24.5.3. Finally, Sect. 24.6 discusses potential applications for MPI and how it can provide clinical benefits, covering cardiovascular applications in Sect.24.6.1, oncology applications in Sect.24.6.2, cell labeling/tracking in Sect. 24.6.3, and concluding with applications that require new, modified tracer materials in Sect. 24.6.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Gleich, J. Weizenecker: Tomographic imaging usingthe nonlinear response of magnetic particles, Nature 435, 1214–1217 (2005)

    Article  Google Scholar 

  2. B. Gleich: Verfahren zur Ermittlung der räumlichen Verteilung magnetischer Partikel, German Patent DE-10151778-A1 (2001)

    Google Scholar 

  3. B. Gleich, J. Weizenecker, J. Borgert: Experimental results on fast 2-D-encoded magnetic particle imaging, Phys. Med. Biol. 53, N81–N84 (2008)

    Article  Google Scholar 

  4. J. Weizenecker, B. Gleich, H. Dahnke, J. Rahmer, J. Borgert: Three-dimensional real-time in vivo magnetic particle imaging, Phys. Med. Biol. 54, L1–L10 (2009)

    Article  Google Scholar 

  5. P. Goodwill, G.C. Lee, G. Scott, P. Stang, S. Conolly: Direct imaging of ferumoxides using magnetic particle imaging: Sensitivity and instrument construction, Proc. Intl. Soc. Mag. Reson. Med. (2009)

    Google Scholar 

  6. P. Goodwill, G. Scott, P. Stang, G.C. Lee, D. Morris, S. Conolly: Direct imaging of SPIOs in mice using magnetic particle imaging: Instrument construction and 3-D imaging, Proc. Intl. Soc. Mag. Reson. Med. (2009) p. 596

    Google Scholar 

  7. P. Goodwill, C. Scott, P. Stang, S. Conolly: Narrowband magnetic particle imaging, IEEE Trans. Med. Imaging 28(8), 1231–1237 (2009)

    Article  Google Scholar 

  8. J. Weizenecker, J. Borgert, B. Gleich: A simulation study on the resolution and sensitivity of magnetic particle imaging, Phys. Med. Biol. 52, 6363–6374 (2007)

    Article  Google Scholar 

  9. T. Knopp, S. Biederer, T.F. Sattel, J. Weizenecker, B. Gleich, J. Borgert, T.M. Buzug: Trajectory analysis for magnetic particle imaging, Phys. Med. Biol. 54(2), 385–397 (2009)

    Article  Google Scholar 

  10. J. Weizenecker, B. Gleich, J. Borgert: Magnetic particle imaging using a field free line, J. Phys. D: Appl. Phys. 41, 105009–105012 (2008)

    Article  Google Scholar 

  11. T. Knopp, T.F. Sattel, S. Biederer, T.M. Buzug: Field-free line formation in a magnetic field, J. Phys. A: Math. Theor. 43, 012002 (2010)

    Article  Google Scholar 

  12. T.F. Sattel, S. Biederer, T. Knopp, K. Lüdtke-Buzug, B. Gleich, J. Weizenecker, J. Borgert, T.M. Buzug: Single-Sided Coil Configuration for Magnetic Particle Imaging, Springer IFMBE, Vol. 25/VII (Springer, Munich 2009)

    Google Scholar 

  13. S. Biederer, T.F. Sattel, T. Knopp, K. Lüdtke-Buzug, B. Gleich, J. Weizenecker, J. Borgert, T.M. Buzug: A spectrometer for magnetic particle imaging, Proc. 4th Eur. Congr. Med. Biomed. Eng., IFMBE Proc., Vol.25 (Springer, Berlin Heidelberg 2008) pp.2313–2316

    Google Scholar 

  14. S. Biederer, T. Knopp, T.F. Sattel, K. Lüdtke-Buzug, B. Gleich, J. Weizenecker, J. Borgert, T.M. Buzug: Magnetization response spectroscopy of superparamagnetic nanoparticles for magnetic particle imaging, J. Phys. D: Appl. Phys. 42(20), 205007 (2009)

    Article  Google Scholar 

  15. J.B. Weaver, A.M. Rauwerdink, C.R. Sullivan, I. Baker: Signal dependence on frequency in magnetic particle imaging, Med. Phys. 34(6), 2361 (2007)

    Article  Google Scholar 

  16. J.B. Weaver, A.M. Rauwerdink: An alternative spatial encoding method for magnetic nanoparticle imaging, Med. Phys. 35(6), 2642 (2008)

    Article  Google Scholar 

  17. J.B. Weaver, E.W. Hansen, A.M. Rauwerdink: Estimating temperature from the magnetic nanoparticle magnetization, Med. Phys. 35(6), 2907–2908 (2008)

    Article  Google Scholar 

  18. J.B. Weaver, A.M. Rauwerdink, C.R. Sullivan, I. Baker: Frequency distribution of the nanoparticle magnetization in the presence of a static as well as a harmonic magnetic field, Med. Phys. 35(5), 1988–1995 (2008)

    Article  Google Scholar 

  19. A.M. Rauwerdink, E.W. Hansen, J.B. Weaver: Nanoparticle temperature estimation in combined AC and DC magnetic fields, Phys. Med. Biol. 54, L51–L55 (2009)

    Google Scholar 

  20. J. Moreland, J. Eckstein, Y. Lin, S.-H. Liou, S. Ruggiero: Magnetic particle imaging with a cantilever torque magnetometer, 2007 APS March Meeting, http://meetings.aps.org/Meeting/MAR07/Event/ 62054, 2007

  21. J. Bohnert, B. Gleich, J. Weizenecker, J. Borgert, O. Dössel: Evaluation of induced current densities and SAR in the human body by strong magnetic fields around 100 kHz, IFMBE Proc. (Springer, Berlin Heidelberg 2008) pp. 2532–2535

    Google Scholar 

  22. J. Bohnert, B. Gleich, J. Weizenecker, J. Borgert, O. Dössel: Optimizing coil currents for reduced SAR in magnetic particle imaging, IFMBE Proc. (2009) pp. 249–252

    Google Scholar 

  23. K. Lüdtke-Buzug, S. Biederer, T.F. Sattel, T. Knopp, T.M. Buzug: Particle-Size Distribution of Dextranand Carboxydextan-Coated Superparamagnetic Nanoparticlesfor Magnetic Particle Imaging, World Congress on Medical Physics and Biomedical Engineering, Springer IFMBE, Vol. 25/VIII (Springer, Munich 2009)

    Google Scholar 

  24. K. Lüdtke-Buzug, S. Biederer, T.F. Sattel, T. Knopp, T.M. Buzug: Preparation and characterization of dextran-covered Fe3O4 nanoparticles for magnetic particle imaging, Proc. 4th Eur. Congr. Med. Biomed. Eng., IFMBE Proc., Vol. 22 (Springer, Berlin Heidelberg 2008) pp. 2343–2346

    Google Scholar 

  25. M.R. Ferguson, K. Minard, K.M. Krishnan: Optimization of nanoparticle core size for magnetic particle imaging, J. Magn. Magn. Mater. 10, 1548–1551 (2009)

    Article  Google Scholar 

  26. D.E. Markov, N.P.M. Haex, J. van Zanten, H. Grull, H.M.B. Boeve: Magnetic particle imaging: Quantitative assessment of tracer performance, 7th Int. Conf. on the Scientific and Clinical Applications of Magnetic Carriers (Vancouver 2008)

    Google Scholar 

  27. N.P.M. Haex, J. van Zanten, H. Grull, D.E. Markov, H.M.B. Boeve: Magnetic nanoparticles as imaging agents for magnetic particle imaging, 7th Int. Conf. on the Scientific and Clinical Applications of Magnetic Carriers (Vancouver 2009)

    Google Scholar 

  28. J.W.M. Bulte, B. Gleich, J. Weizenecker, S. Bernard, P. Walczak, D.E. Markov, H.C.J. Aerts, J. Borgert, H. Boeve: Developing Cellular MPI: Initial Experience (ISMRM, Toronto 2008) pp. 201–204

    Google Scholar 

  29. S. Chikazumi, S.H. Charap: Physics of Magnetism (John Wiley & Sons, New York 1964)

    Google Scholar 

  30. Z.-P. Liang, P.C. Lauterbur: Principles of Magnetic Resonance Imaging: A Signal Processing Perspective (Wiley-IEEE Press, New York 1999)

    Book  Google Scholar 

  31. J.B. Johnson: Thermal agitation of electricity in conductors, Phys. Rev. 32, 97–109 (1928)

    Article  Google Scholar 

  32. T.F. Sattel, T. Knopp, S. Biederer, B. Gleich, J. Weizenecker, J. Borgert, T.M. Buzug: Single-sided device for magnetic particle imaging, J. Phys. D: Appl. Phys. 42(2), 1–5 (2009)

    Article  Google Scholar 

  33. W. Press, S. Teukolsky, W. Saul, B. Flannery: Numerical Recepies in C: The Art of Scientific Computing (Cambridge Univ. Press, Cambridge, New York 1992)

    Google Scholar 

  34. A. Macovski, S. Conolly: Novel approaches to lowcost MRI, Magn. Reson. Med. 30(2), 221–230 (1993)

    Article  Google Scholar 

  35. R.D. Venook, N.I. Matter, M. Ramachandran, S.E. Ungersma, G.E. Gold, N.J. Giori, A. Macovski, G.C. Scott, S.M. Conolly: Prepolarized magnetic resonance imaging around metal orthopedic implants, Magn. Reson. Med. 56(1), 177–186 (2006)

    Article  Google Scholar 

  36. S.E. Ungersma, N.I. Matter, J.W. Hardy, R.D. Venook, A. Macovski, S.M. Conolly, G.C. Scott: Magnetic resonance imaging with T1 dispersion contrast, Magn. Reson. Med. 55(6), 1362–1371 (2006)

    Article  Google Scholar 

  37. R. Schmitt, S. Froehner, J. Brunn, M. Wagner, H. Brunner, O. Cherevatyy, F. Gietzen, G. Christopoulos, S. Kerber, F. Fellner: Congenital anomalies of the coronary arteries: imaging with contrast-enhanced, multidetector computed tomography, Eur. Radiol. 15(6), 1110–1121 (2005)

    Article  Google Scholar 

  38. M.B. Nienhuis, J.P. Ottervanger, H.J.G. Bilo, B.D. Dikkeschei, F. Zijlstra: Prognostic value of troponin after elective percutaneous coronary intervention: A meta-analysis, Catheter Cardiovasc. Interv. 71(3), 318–324 (2008)

    Article  Google Scholar 

  39. D.E. Kuhl, R.G. Edwards: Image separation radioisotope scanning, Radiology 80, 653–662 (1963)

    Google Scholar 

  40. D.A. Chesler, J.R.B. Hoop, G.L. Brownell: Transverse section imaging of myocardium with 13 NH4, J. Nucl. Med. 14, 623–627 (1973)

    Google Scholar 

  41. M.M. Ter-Pogossian, M.E. Phelps, E.J. Hoffman, N.A. Muullani: A positron emission transaxial tomography for nuclear medicine imaging (PETT), Radiology 114, 89–98 (1975)

    Google Scholar 

  42. Z.A. Fayad, V. Fuster: Clinical imaging of the high-risk or vulnerable atherosclerotic plaque, Circ. Res. 89, 305–316 (2001)

    Article  Google Scholar 

  43. V. Saxena, I. Gonzales-Gomez, W.E. Laug: A non-invasive multimodal technique to monitor brain tumor vascularization, Phys. Med. Biol. 52, 5295–5308 (2007)

    Article  Google Scholar 

  44. A. Luciani, E. Itti, A. Rahmouni, M. Meignan, O. Clement: Lymph node imaging: basic principles, Eur. J. Radiol. 58, 338–344 (2006)

    Article  Google Scholar 

  45. A. Jordan, R. Scholz, P. Wust, H. Fähling, J. Krause, W. Wlodarczyk, B. Sander, T. Vogl, R. Felix: Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo, Int. J. Hyperth. 13(6), 587–605 (1997)

    Article  Google Scholar 

  46. M. Magnani, L. Rossi, M. D’ascenzo, I. Panzani, L. Bigi, A. Zanella: Erythrocyte engineeringfor drug delivery and targeting, Biotechnol. Appl. Biochem. 8(1), 1–6 (1998)

    Google Scholar 

  47. J.G. Zheng, Z.M. Yao, C.Y. Shu, Y. Zhang, X. Zhang: Role of SPECT/CT in diagnosis of hepatic hemangiomas, World J. Gastroenterol. 11(34), 5336–5341 (2005)

    Google Scholar 

  48. S.I. Zink, S.K. Ohki, B. Stein, D.A. Zambuto, R.J. Rosenberg, J.J. Choi, D.S. Tubbs: Noninvasive evaluation of active lower gastrointestinal bleeding: comparison between contrast-enhanced MDCT and 99mTc-labeled RBC scintigraphy, AJR Am. J. Roentgenol. 181(4), 1107–1114 (2008)

    Article  Google Scholar 

  49. D.M. Howarth: The role of nuclear medicine in the detection of acute gastrointestinal bleeding, Semin. Nucl. Med. 36(2), 133–146 (2006)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Borgert, J., Gleich, B., Buzug, T.M. (2011). Magnetic Particle Imaging. In: Kramme, R., Hoffmann, KP., Pozos, R.S. (eds) Springer Handbook of Medical Technology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74658-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74658-4_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74657-7

  • Online ISBN: 978-3-540-74658-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics