Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Magnetic resonance imaging (MRI) provides superiorvisualization of morphology, biochemistry, and physiology through differently weighted soft tissue contrasts (T 1 , T 2 , fat or water suppression, etc.). In addition, its high flow sensitivity depicts functionalaspects such as blood flow, perfusion, and diffusion of tissue and organs. The physical nature of MRI provides three-dimensional, spatially defined image volumes which allow image guidance and automatic slice orientation as well as device localization (tip tracking). Therefore, magnetic resonance (MR) safety and compatibility are important issues for all items, including implants, surgical tools, and electronic or mechatronic equipment, to be used within an MR environment. MR testing of medical devices is required for device approval by regulatory agencies, e.g., the Food and Drug Administration (FDA) and the European Union (EU) Notified Bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ISO/IEC TS 10974: International Technical Specification for, Requirements for the safety and compatibility of MRI for patients with an active implantable medical device; to be published 2010/2011

    Google Scholar 

  2. J. Nyenhuis, S.-M. Park, R. Kamondetdacha, A. Amjad, F.G. Shellock, A.R. Rezai: MRI and Implanted Medical Devices: Basic Interactions with an Emphasis on Heating, IEEE Tran. Device Mater. Reliab. 5(3), 467–480 (2005)

    Article  Google Scholar 

  3. G. Schaefers, A. Melzer: Testing methods for MR safety and compatibility of medical devices, Minim. Invasive Ther. 15(2), 71–75 (2006)

    Article  Google Scholar 

  4. G. Schaefers: Testing MR safety — An overview of the methods and current standards and compatibility, IEEE Eng. Med. Biol. Mag. 27(3), 23–27 (2008)

    Article  Google Scholar 

  5. ASTM F2052-06e1: Standard Test Method for Measurement of Magnetically Induced Displacement Force on Medical Devices in the Magnetic Resonance Environment (2006)

    Google Scholar 

  6. ASTM F2213-06: Standard Test Method for Measurement of Magnetically Induced Torque on Passive Implants in the Magnetic Resonance Environment (2006)

    Google Scholar 

  7. ASTM F2182-09: Standard Test Method for Measurement of Radio Frequency Induced Heating On or Near Passive Implants During Magnetic Resonance Imaging (2002) www.astm.org

  8. ASTM F2119-01: Standard Test Method for Evaluation of MR Image Artifacts from Passive Implants (2001) www.astm.org

  9. ASTM F2503-08: Standard Practice for Marking Medical Devices and Other Items for Safety in the MR Environment (2008)

    Google Scholar 

  10. F.G. Shellock, E. Kanal: Magnetic Resonance Bioeffects, Safety, and Patient Management (R ven, New York 1994)

    Google Scholar 

  11. IEC 60601-2-33: Medical electrical equipment — Part 2–33: Particular requirements for the safety of magnetic resonance equipment for medical diagnosis; 3rd edition, (2010)

    Google Scholar 

  12. K.M. Ludeke, P. Roschmann, R. Tischler: Susceptibility artefacts in NMR imaging, J. Magn. Reson. Imaging 3, 329–343 (1985)

    Article  Google Scholar 

  13. S.M. Boyd, W.S. Boivin, J.N. Coletta, K. Kempa, L.N. Kerr: Mechanical Forces on Implanted Medical Devices in MRI Units, Lab. Inf. Bull. 4208, 1–10 (2000)

    Google Scholar 

  14. K.B. Baker, J.A. Tkach, J.A. Nyenhuis, M. Phillips, F.G. Shellock, J. Gonzalez-Martinez, A.R. Rezai: Evaluation of specific absorption rate as a dosimeter of MRI-related implantheating, J. Magn. Reson. Imaging 20, 315–320(2004)

    Article  Google Scholar 

  15. S. Schwarzer, U. Jorczyk, A. Melzer, W. Zylka: Numerical Investigation of Electromagnetic Properties of MR Active Implants, Biomed.Tech. 49(1), 184–185 (2004)

    Google Scholar 

  16. J.P. Thiele, M.-A. Golombeck, O. Dössel: Thermal heating of human tissue induced by electromagnetic fields of magnetic resonance imaging, Biomed. Tech. 47(1), 743–746 (2002)

    Article  Google Scholar 

  17. H. Kugel, C. Bremer, M. Puschel, H. Lenzen, B. Tombach, H. Van Aken, W. Heindel, Hazardous situation in the MR bore: induction in ECG leads causes fire, Eur. Radiol. 13, 690–694 (2003)

    Google Scholar 

  18. K. Butts, J.M. Pauly, B.L. Daniel, S. Kee, A.M. Norbash: Management of Biopsy Needle Artifacts: Techniques for RF-Refocused MRI, J. Magn. Reson. Imaging 9, 586–595 (1999)

    Article  Google Scholar 

  19. A. Oppelt (Ed.): Imaging Systems for Medical Diagnostics, 2nd edn. (Publicis Corporate Publishing, Erlangen 2005) p. 592

    Google Scholar 

  20. J. Schenck: The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds, Med. Phys. 23(6), 815–850 (1996)

    Article  Google Scholar 

  21. B. Müller-Bierl, H.J. Graf, G. Steidle, F. Schick: Compensation of magnetic field distortions from paramagnetic instruments by added diamagnetic material: Measurements and numerical simulations, Med. Phys. 32(1), 76–84 (2005)

    Article  Google Scholar 

  22. A. Oppelt, I. Delakis: Safety aspects in interventional MRI, Z. Med. Phys. 12(1), 5–15 (2002)

    Google Scholar 

  23. L.W. Bartels, C.J. Bakker, M.A. Viergever: Improved lumen visualization in metallic vascular implants by reducing RF artifacts, Magn. Reson. Med. 47(1), 171–180 (2002)

    Article  Google Scholar 

  24. C.J.G. Bakker, R. Bhagwandien, M.A. Meorland, M. Fuderer: Susceptibility artifacts in 2DFT spinecho and gradient-echo imaging: The cylinder model revisited, J. Magn. Res. Imaging 11, 539–548 (1993)

    Article  Google Scholar 

  25. A. Melzer: MRI safety of medical devices and procedures, Minim. Invasive Ther. Allied Technol. 15(2), 51–52 (2006)

    Article  Google Scholar 

  26. G.P. Teitelbaum, H.V. Ortega, S. Vinitsky, H. Stern, J.S. Tsuruda, D.G. Mitchell, M.D. Rifkin, W.G. Bradley Jr.: Low-artifact intravascular devices: MR imaging evaluation, Radiology 168, 713–719 (1988)

    Google Scholar 

  27. G.P. Teitelbaum, W.G. Bradley Jr, B.D. Klein: MR imaging artifacts, ferromagnetism, and magnetic torque of intravascular filters, stems and coils, Radiology 166, 657–664 (1988)

    Google Scholar 

  28. A.H. Cragg, S.C. De Jong, W.H. Barnhart, S.K. Landas, T.P. Smith: Nitinol intravascular stents: results of preclinical evaluation, Radiology 189, 775–778 (1993)

    Google Scholar 

  29. A.H. Matsumoto, G.P. Teitelbaum, M.J. Carvlin, K.H. Barth, M.A. Savin, E.P. Strecker: Gadolinium enhanced MR imaging of vascular stents, J. Comput. Assist. Tomogr. 14, 357–361 (1990)

    Article  Google Scholar 

  30. J. Link, J.C. Steffens, J. Brossmann, J. Graessner, S. Hacketal, M. Heller: Iliofemoral arterial occlusive disease: contrast-enhanced MR angiography for preinterventional evaluation and follow-up after stent placement, Radiology 212, 371–377 (1999)

    Google Scholar 

  31. D.J. Taylor, G. Brown: Magnetic resonance imaging of vascular stents, Proc. Int. Soc. Magn. Reson. Med. 7, 1892 (1999)

    Google Scholar 

  32. P.R. Hilfiker, H.H. Quick, J.F. Debatin: Plain and covered stent-grafts: in vitro evaluation of characteristics at three dimensional MR angiography, Radiology 211, 693–697 (1999)

    Google Scholar 

  33. P.R. Hilfiker, H.H. Quick, M. Schmidt, J.F. Debatin: In vitro image characteristics of an abdominal aortic stent graft: CTA versus 3D MRA, MAGMA 8, 27–32 (1999)

    Google Scholar 

  34. T. Klemm, S. Duda, J. Machann, K. Seekamp-Rahn, L. Schnieder, C.D. Claussen, F. Schick: MR imaging in the presence of vascular stents: a systematic assessment of artifacts for various stent orientations, sequence types, andfield strengths, J. Magn. Reson. Imaging 12, 606–615 (2000)

    Article  Google Scholar 

  35. E.M. Haacke, R.W. Brown, M.R. Thompson, R. Venkatesan: Magnetic Resonance Imaging, Physical Principles and Sequence Design (Wiley-Liss, New York 1999)

    Google Scholar 

  36. E. Immel, C. K. Naber, H. H. Quick, F. Breuckmann, D. Daumgart, S. Aker, G. M. Kaiser, K. Thonak, A. Melzer: Resonant balloon expandable stent designed for the improved visualization and implantation in MRI, Am. J. Cardiol. 100(8A), 14L (2007)

    Google Scholar 

  37. E. Immel, A. Melzer, C. Thonak: Self expanding stents designed for the improved visualization and implantation in MRI, Am. J. Cardiol. 100(8A), 85L (2007)

    Google Scholar 

  38. K.M. Ludeke, P. Roschmann, R. Tischler: Susceptibility artefacts in NMR imaging, J. Magn. Reson. Imaging 3, 329–343(1985)

    Article  Google Scholar 

  39. C.J. Bakker, R. Bhagwandien, M.A. Moerland, M. Fuderer: Susceptibility artifacts in 2DFT spinecho and gradient-echo imaging: the cylinder model revisited, J. Magn. Reson. Imaging 11, 539 (1993)

    Article  Google Scholar 

  40. A.J. Evans, R.A. Blinder, R.J. Herfkens, C.E. Spritzer, D.O. Kuethe, E.K. Fram, L.W. Hedlund: Effects of turbulence on signal intensity in gradient echo images, Invest. Radiol. 23, 512–518 (1988)

    Article  Google Scholar 

  41. S. Fabregues, K. Baijens, R. Rieu, P. Bergeron: Hemodynamics of endovascular prostheses, J. Biomech. 31, 45–54(1998)

    Article  Google Scholar 

  42. H.S. Muller, H. Schwarzenberg, F. Wesner, R. Drost, C.C. Gluer, M. Heller: Visualization of flow patterns from stents and stent-grafts in an in vitro flow-model, Invest. Radiol. 33, 762–770 (1998)

    Article  Google Scholar 

  43. C.R. Camacho, D.B. Plewes, R.M. Henkelman: Non-susceptibility artifacts due to metallic objects in MR imaging, J. Magn. Reson. Imaging 5, 75–88 (1995)

    Article  Google Scholar 

  44. Historical standard, ASTM F2052-02: Standard Test Method for Measurement of Magnetically Induced Displacement Force on Medical Devices in the Magnetic Resonance Environment (ASTM International, West Conshohocken 2002) A copy of the complete standard may be purchased from service, www.astm.org

  45. Guidance for Industry and FDA Staff; Establishing Safety and Compatibility of Passive Implants in the Magnetic Resonance (MR) Environment; Document issued on: August 21, 2008; US Department of Health and Human Services, Food and Drug Administration, Center for Devices and Radiological Health; http://www.fda.gov/cdrh/osel/guidance/1685.pdf

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schaefers, G., Melzer, A. (2011). Devices and Materials in MRI. In: Kramme, R., Hoffmann, KP., Pozos, R.S. (eds) Springer Handbook of Medical Technology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74658-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74658-4_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74657-7

  • Online ISBN: 978-3-540-74658-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics