Skip to main content

Seismic Methods

  • Chapter
Environmental Geology

Abstract

The basic principle of all seismic methods is the controlled generation of elastic waves by a seismic source in order to obtain an image of the subsurface. Seismic waves are pulses of strain energy that propagate in solids and fluids. Seismic energy sources, whether at the Earth’s surface or in shallow boreholes, produce wave types known as:

  • • body waves, where the energy transport is in all directions, and

  • • surface waves, where the energy travels along or near to the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and further reading

  • Aki, K.I. & Richards, P.G. (1980): Quantitative seismology: Theory and methods, vol. 1. Freeman, New York.

    Google Scholar 

  • Al-Chalabi, M. (1994): Seismic velocities — a critique. First Break, 12, 589–596.

    Google Scholar 

  • Avseth, P., Mukerij, T. & Mavko, G. (2005): Quantitative seismic interpretation: Applying rock physics tools to reduce interpretation risk. Cambridge University Press.

    Google Scholar 

  • Bachrach, R., Dvorkin, J. & Nur, A. (1998): High resolution shallow-seismic experiments in sand. Part I and II. Geophysics, 63, 1225–1240.

    Google Scholar 

  • Baker, G. S., Steeples D. W. & Drake, M. (1998): Muting the noise cone in near-surface reflection data: An example from southeastern Kansas. Geophysics, 63, 1332–1338.

    Article  Google Scholar 

  • Baker, G. S., Steeples D. W. & Schmeissner, C. (2001): The effect of seasonal soilmoisture conditions on near-surface seismic reflection data quality. First Break, 20,1, 35–41.

    Google Scholar 

  • Beck, A. E. (1981): Physical principles of exploration methods. Mac Millan, London.

    Google Scholar 

  • Berckhemer, H. (1990): Grundlagen der Geophysik. Wiss. Buchgesellschaft, Darmstadt.

    Google Scholar 

  • Berryman, J. G. (1999): Tutorial — Origin of Gassmann’s equations. Geophysics, 64, 1627–1629.

    Article  Google Scholar 

  • Bradford, J. H., Sawyer, D. S., Zelt, C. A. & Oldow, J. S. (1998): Imaging a shallow aquifer in temperate glacial sediments using seismic reflection profiling with DMO processing. Geophysics, 63, 1248–1256.

    Article  Google Scholar 

  • Brouwer, J. & Helbig, K. (1998): Shallow high-resolution reflection seismics: Vol. 19 in: Helbig, K. & Treitel, S. (Eds.): Handbook of Geophysical Exploration, Seismic Exploration. Elsevier, Amsterdam.

    Google Scholar 

  • Büker, F. (1998): Mapping the shallow subsurface using 2-D and 3-D reflection seismic techniques. Dissertation ETH Zürich, Switzerland.

    Google Scholar 

  • Büker, F., Green, A. & Horstmeyer, H. (1998a): Shallow 3-D seismic reflection surveying: Data acquisition and preliminary processing strategies. Geophysics, 63, 1434–1450.

    Article  Google Scholar 

  • Büker, F., Green, A. & Horstmeyer, H. (1998b): Shallow seismic reflection study of a glaciated valley. Geophysics, 63, 1395–1407.

    Article  Google Scholar 

  • Buttkus, B. (2000): Spectral analysis and filter theory in applied geophysics. Springer, Berlin. Consortium for Research in Elastic Wave Exploration Seismology: www.crewes.org

    Google Scholar 

  • Corsmit, I, Versteeg, W.H., Brouwer, J. H. & Helbig, K. (1987): High resolution 3D reflection seismic on a tidal flat: Acquisition, processing and interpretation. First Break 6, 9–23.

    Google Scholar 

  • Daley, T. & Cox, D. (2001): Orbital vibrator seismic source for simultaneous P-and S-wave crosswell acquisition. Geophysics, 66, 1471–1480.

    Article  Google Scholar 

  • Davies, K. J., Barker, R. D. & King, R. F. (1992): Application of shallow reflection technique in hydrogeology. The Quarterly Journal of Engineering Geology, 25, 207–216.

    Article  Google Scholar 

  • Davies, K. J. & King, R. F. (1992): The essentials of shallow reflection data processing. The Quarterly Journal of Engineering Geology, 25, 191–206.

    Article  Google Scholar 

  • Diebold, J. B. & Stoffa, P. L. (1981): The traveltime equation, tau-P-mapping and inversion of common midpoint data. Geophysics, 46, 238–245.

    Article  Google Scholar 

  • Dix, C. H. (1955): Seismic velocities from surface measurements. Geophysics, 20, 68–86.

    Article  Google Scholar 

  • Doll, W. E., Miller, R. D. & Xia, J. (1998): A non-invasive shallow seismic source comparison on the Oak Ridge Reservation, Tennesse. Geophysics, 63, 1318–1331.

    Article  Google Scholar 

  • Edelmann, H. A. K. (1981): Shover shear-wave generation by vibration orthogonal to the polarization. Geophysical Prospecting, 29, 541–549.

    Article  Google Scholar 

  • EEGS (2005): Special Issue Seismic Surface Waves. Journal of Environmental & Engineering Geophysics, 10, 67–234. ETH Zuerich-website: www.aug.geophys.etzh.ch/teach.htm

    Google Scholar 

  • Fagin, S. (1998): Model-based depth imaging. Course note series, no. 10, SEG Tulsa.

    Google Scholar 

  • Fertig, J. (2005): Geschwindigkeits-und Dichtewerte in Sedimenten. In: Knädel, K. Krummel, H. & Lange, G.: Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten, vol. 3, Geophysik. Springer, Berlin.

    Google Scholar 

  • Frei, W. (1995): Refined field static corrections in near-surface reflection profiling across rugged terrain. The Leading Edge, 259–262.

    Google Scholar 

  • Galperin, E. I. (1985): Vertical seismic profiling and its exploration potential. D. Reidel, Dordrecht.

    Google Scholar 

  • Gebrande, H. (1986): CMP-Refraktionsseismik. In: Dresen, L., Rüter, H. & Budach, w. (Eds.): Seismik auf neuen Wegen, 6th Mintrop-Seminar, Unikontakt, Ruhr Universität Bochum, 191–206.

    Google Scholar 

  • Ghose, R., Nijhof, V., Brouwer, J., Matsubara, Y., Kaida, Y. & Takahashi, T. (1998): Shallow to very shallow, high-resolution reflection seismic using portable vibrator system. Geophysics, 63, 1295–1309.

    Article  Google Scholar 

  • Gibson, R. L. JR. & Peng, C. (1994): Low-and high-frequency radiation from seismic sources in cased boreholes. Geophysics, 59, 1780–1785.

    Article  Google Scholar 

  • Gray, S. H., Etgen, I, Dellinger, J. & Whitmore, D. (2001): Seismic migration problems and solutions. Geophysics, 66, 1622–1640.

    Article  Google Scholar 

  • Gregory, A. R. (1976): Fluid saturation effects on dynamic elastic properties of sedimentary rocks. Geophysics, 41, 895–921.

    Article  Google Scholar 

  • Goudswaard, J. C. M., Ten Kroode, A. P. E., Snieder, R. K. & Verdel, A. R. (1998): Detection of lateral velocity contrasts by cross-well traveltime tomography. Geophysics, 63, 523–533.

    Article  Google Scholar 

  • Hagedoorn, I. G. (1959): The plus-minus method of interpreting seismic refraction sections. Geophysical Prospecting, 7, 158–182.

    Article  Google Scholar 

  • Haegeman, W. & Van Impe, W. F. (1999): Characterization of disposal sites from surface wave measurements. JEEG, 4/1, 27–33.

    Google Scholar 

  • Hales, F. W. (1958): An accurate graphical method for interpreting seismic refraction lines. Geophysical Prospecting, 6, 285–294.

    Article  Google Scholar 

  • Helbig, K. (1994): Foundations of Anisotropy for Exploration Seismics. In: Handbook of Geophysical Exploration. Seismic Exploration, vol. 22.

    Google Scholar 

  • Hering A., Misiek R., Gyulai A., Ormos T., Dobroka, M. & DresenL. (1995): A joint inversion algorithm to process geoelectric and surface wave data. Geophysical Prospecting, 43, 135–156.

    Article  Google Scholar 

  • Herbst, R., Kapp, I., Krummel, H. & Lück, E. (1998): Seismic sources for shallow investigations: A field comparison from Northern Germany. Journal of Applied Geophysics, 38, 301–317.

    Article  Google Scholar 

  • Hill, I. A. (1992a): Field techniques and instrumentation in shallow seismic reflection. The Quarterly Journal of Engineering Geology, 25, 183–190.

    Article  Google Scholar 

  • Hill, I. A. (1992b): Better than drilling? Some shallow seismic reflection case histories. The Quarterly Journal of Engineering Geology, 25, 239–248.

    Article  Google Scholar 

  • Hunter, J. A., Pullan, S. E., Burns, R. A., Good, R. L., Harris, J. B. Pugin, A. Skvortsov, A. & Goriainov (1998): Downhole seismic logging for high-resolution reflection surveying in unconsolidated overburden. Geophysics, 63, 1371–1384.

    Article  Google Scholar 

  • Jefferson, R. D., Steeples, D. W., Black, R. A. & Carr, T. (1998): Effects of soil-moisture content on shallow seismic data. Geophysics, 63, 1357–1362.

    Article  Google Scholar 

  • Kähler, S. & Meißner, R. (1983): Radiation and receiver pattern of shear and compressional waves as function of Poisson’s ratio. Geophysical Prospecting, 31, 421–435.

    Article  Google Scholar 

  • Kearey, P. & Brooks, M. (1991): An Introduction to Geophysical Exploration. Backwell, Oxford.

    Google Scholar 

  • Keiswetter, D. A. & Steeples, D. (1995): A field investigation of source parameters for the sledgehammer. Geophysics, 60, 1051–1057.

    Article  Google Scholar 

  • King, R. F. (1992): High-resolution shallow seismology: history, principles and problems. The Quarterly Journal of Engineering Geology, 25, 177–182.

    Article  Google Scholar 

  • Knapp, R. W. & Steeples, D. W. (1986): High resolution common depth point seismic reflection profiling: Instrumentation / Field acquisition parameter design. Geophysics, 51, 276–294.

    Article  Google Scholar 

  • Krohn, Ch. E. (1984): Geophone ground coupling. Geophysics, 49, 722–731.

    Article  Google Scholar 

  • Lanz, E., Maurer, H. & Green, A. (1998): Refraction tomography over a buried waste disposal site. Geophysics, 63, 1414–1433.

    Article  Google Scholar 

  • Lehmann, B. (2007): Seismic traveltime tomography for engineering and exploration application. EAGE Publication BV, Houten.

    Google Scholar 

  • Lavergne, M. (1989): Seismic methods. Editions Technip, Paris.

    Google Scholar 

  • Leparoux, D., Bitri, A. & Grandjean, G. (2000): Underground cavity detection: A new method based on seismic Rayleigh waves. Europ. J. Environm. Engin. Geophys., 5, 33–53.

    Google Scholar 

  • Lindsey, J. P. (1989): The Fresnel zone and it’s interpretive significance. The Leading Edge, 8, 33–39.

    Article  Google Scholar 

  • Lindsey, J. P. (1991): Seismic sources I have known. The Leading Edge, 10, 47–48.

    Article  Google Scholar 

  • Mccann, D. M., Andrew, E. M. & Mccann, C. (1985): Seismic sources for shallow reflection surveying. Geophysical Prospecting, 33, 943–955.

    Article  Google Scholar 

  • Mavko, G., Mukerji, T. & Dvorkin, J. (1998): The rock physics handbook. Cambridge University Press.

    Google Scholar 

  • Miller, K. C., Harder, S. H., Adams, D. C. & O∣donnel, T., Jr. (1998): Integrating high-resolution refraction data into near-surface seismic reflection data processing and interpretation. Geophysics, 63, 1339–1347.

    Article  Google Scholar 

  • Milligan, P. A., RectorIII, J. A. & Bainer, R. W. (1997): Hydrophone VSP imaging at a shallow site. Geophysics, 62, 842–852.

    Article  Google Scholar 

  • Nolet, G. (Ed.) (1987): Seismic tomography: with applications in global seismology and exploration geophysics. D. Reidel, Dordrecht.

    Google Scholar 

  • Palmer, D. (1981): An introduction to the generalized reciprocal method of seismic refraction interpretation. Geophysics, 46, 1508–1518.

    Article  Google Scholar 

  • Palmer, D. (1986): Refraction seismics. In: Helbig& Treitel (Eds.): Handbook of geophysical exploration. Seismic exploration, 13, Geophysical Press, London Amsterdam.

    Google Scholar 

  • Palmer, D. (2001a): Imaging refractors with the convolution section. Geophysics, 66, 1582–1589.

    Article  Google Scholar 

  • Palmer, D. (2001b): Resolving refractor ambiguities with amplitudes. Geophysics, 66, 1590–1593.

    Article  Google Scholar 

  • Palmer, D. (2001c): A new direction for shallow refraction seismology: integrating amplitudes and traveltimes with the refraction convolution section. Geophysical Prospecting, 49 (Special Issue in Memory of J.G. Hagedoorn), 657–673.

    Article  Google Scholar 

  • Park, C. B., Miller, R. D. & Xia, J. (1999): Multichannel analysis of surface waves. Geophysics, 64, 800–806.

    Article  Google Scholar 

  • Pasasa, L., Wenzel, F. & Zhao, P. (1998): Prestack Kirchoff depth migration of shallow seismic data. Geophysics, 64, 1241–1247.

    Article  Google Scholar 

  • Pullan, S. E., Miller, R. D., Hunter, J. A. & Steeples, D. W. (1991): Shallow seismic reflection survey — CDP or “optimum offset”. 61st Ann. Internat. Meeting., Soc. Expl. Geophys., expanded abstracts, 576–579.

    Google Scholar 

  • Reynolds, J. M. (1997): An Introduction to Applied and Environmental Geophysics. John Wiley & Sons Ltd., Chichester.

    Google Scholar 

  • Robein, E. (2003): Velocities, time-imaging and depth-imaging in reflection seismics. Principles and methods. EAGE Publications BV, Houten.

    Google Scholar 

  • Rockwell, D. W. (1967): A general wavefront method. In: Musgrave A. W. (Ed.): Seismic refraction profiling. Soc. Explor. Geophys., Tulsa, 363–415.

    Google Scholar 

  • Schlumberger Oilfield Glossary: www.glossary.oilfield.slb.com

    Google Scholar 

  • SEG technical standards: www.seg.org/publications/tech-stand/

    Google Scholar 

  • Sheriff, R. E. (1980): Nomogram for Fresnel-zone calculation — short note. Geophysics, 45, 968–972.

    Article  Google Scholar 

  • Sheriff, R. E. & Geldart, L. P. (1982): Exploration seismology, 1, history, theory and data acquisition. Cambridge University Press, Cambridge.

    Google Scholar 

  • Sheriff, R. E. (1991): Encyclopedic dictionary of exploration geophysics. Geophysical reference series, 1. Society of Exploration Geophysicists, Tulsa.

    Google Scholar 

  • Shtivelman, V., Frieslander, U., Zilberman, E. & Amit, R. (1998): Mapping shallow faults at the Evrona playa site using high-resolution reflection method. Geophysics, 63, 1257–1264.

    Article  Google Scholar 

  • Shtivelman, V. (2002): Surface wave sections as a tool for imaging subsurface inhomogeneities. Europ. J. Environm. Engin. Geophys., 7, 121–138.

    Google Scholar 

  • Shuey, R.T. (1985): A simplification of the Zoeppritz equations. Geophysics, 50, 609–614.

    Article  Google Scholar 

  • Simon Fracer University (SFU) website: www.sfu.ca/earth-sciences/courses

    Google Scholar 

  • Sjägren, B. (2000): A brief study of applications of the generalized reciprocal method and of some limitations of the method. Geophysical Prospecting, 48, 815–834.

    Article  Google Scholar 

  • Socco, L. V. & Strobbia, C. (2004): Surface-wave method for near-surface characterization: a tutorial. Near Surface Geophysics, 2, 165–186.

    Google Scholar 

  • Steeples, D. W. & Miller, R. D. (1988): Seismic reflection methods applied to engineering, environmental, and ground-water problems. Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP). March28–31, Golden, Co., 409–461.

    Google Scholar 

  • Steeples, D. W., Green, A. G., Mcevilly, T. V., Miller, R. D., Doll, W. E. & Rector, J. W. (1997): A workshop examination of shallow seismic reflection surveying. The Leading Edge, 1641–1647.

    Google Scholar 

  • Steeples, D. W. & Miller, R. D. (1998): Avoiding pitfalls in shallow seismic reflection surveys. Geophysics, 63, 1213–1224.

    Article  Google Scholar 

  • Steeples, D. W. (2005): Shallow seismic methods. In: Rubin, Y. & Hubbard, S. S. (Eds.): Hydrogeophysics. In: Water Science and Technology Library, vol. 50, 215–251. Springer, Dordrecht.

    Google Scholar 

  • Stewart, R. R. (1991): Exploration seismic tomography: fundamentals, course notes series, 3. S.N. DOMENICO (Series ed.), Society of Exploration Geophysics, Tulsa.

    Google Scholar 

  • Stone, D. G. (1994): Designing seismic surveys in two and three dimensions. Geophysical Reference Series 5. SEG, Tulsa.

    Google Scholar 

  • Taner, M. T. & Koehler, F. (1969): Velocity spectra — digital computer derivation and applications of velocity functions. Geophysics, 34, 859–881.

    Article  Google Scholar 

  • Telford, W. M., Geldart, L. P., Sheriff, R. E. & Keys, D. A. (1990): Applied Geophysics. Cambridge University Press.

    Google Scholar 

  • Thornburgh, H. R. (1930): Wavefront diagram in seismic interpretation. Bull. Am. Ass. Petr. Geol., 14, 185–200.

    Google Scholar 

  • Van Der Veen, M. & Green, A. G. (1998): Land streamer for shallow seismic data acquisition: Evaluation of gimbal-mounted geophones. Geophysics, 63, 1408–1413.

    Article  Google Scholar 

  • Van Der Veen, M., Buness, H. A., Buker, F. & Green, A. (2000): Field comparison of high-frequency seismic sources for imaging shallow (10–250 m) structures. JEEG, 5/2, 39–56.

    Google Scholar 

  • Van Overmeeren, R. A. (2001): Hagedoorn’s plus-minus method: The beauty of simplicity. Geophysical Prospecting, 49, 687–696.

    Article  Google Scholar 

  • Widess, M. B. (1973): How thin is a thin bed? Geophysics, 38, 1176–1180.

    Article  Google Scholar 

  • Whiteley, R. J., Hunter, J. A., Pullan, S. E. & Nutalaya, P. (1998): “Optimum offset” seismic reflection mapping of shallow aquifers near Bangkok. Geophysics, 63, 1385–1394.

    Article  Google Scholar 

  • Wiederhold, H., Buness, H. A. & Bram, K. (1998): Glacial structures in northern Germany revealed by a high-resolution reflection seismic survey. Geophysics, 64, 1265–1272.

    Article  Google Scholar 

  • Wong, J. (2000): Crosshole seismic imaging for sulphide orebody delineation near Sudbury, Ontario, Canada. Geophysics, 65, 1900–1907.

    Article  Google Scholar 

  • Xia, J., Miller, R. D. & Park, C. B. (1999): Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics, 64, 691–700.

    Article  Google Scholar 

  • Xia, J., Miller, R. D., Park, C. B., Ivanov, J., Tian, G. & Chen, C. (2004): Utilization of high-frequency Rayleigh waves in near-surface geophysics. The Leading Edge, 753–759.

    Google Scholar 

  • yilmaz, ä. (2001): seismic data analysis. in: cooper, m. r. and doherty, s. m. (eds.): seismic data analysis, 2 volumes, seg, tulsa.

    Google Scholar 

  • Young, R. (2005): A lab manual of seismic reflection processing. EAGE publications.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schuck, A., Lange, G. (2007). Seismic Methods. In: Environmental Geology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74671-3_11

Download citation

Publish with us

Policies and ethics