Skip to main content

Bulk Single Crystals Grown from Solution on Earth and in Microgravity

  • Chapter
Springer Handbook of Crystal Growth

Part of the book series: Springer Handbooks ((SHB))

Abstract

The growth of crystals has been of interest to physicists and engineers for a long time because of their unique properties. Single crystals are utilized in such diverse applications as pharmaceuticals, computers, infrared detectors, frequency measurements, piezoelectric devices, a variety of high-technology devices, and sensors. Solution crystal growth is one of the important techniques for the growth of a variety of crystals when the material decomposes at the melting point and a suitable solvent is available to make a saturated solution at a desired temperature. In this chapter an attempt is made to provide some fundamentals of growing crystals from solution, including improved designs of various crystallizers.

Since the same solution crystal growth techniques could not be used in microgravity, authors had proposed a new cooled sting technique to grow crystals in space. Authorsʼ experiences of conducting two Space Shuttle experiments relating to solution crystal growth are also detailed in this work. The complexity of these solution growth experiments to grow crystals in space are discussed. These were some of the earliest experiments performed in space, and various lessons learnt are described.

A brief discussion of protein crystal growth, which also shares the basic principles of the solution growth technique, is given along with some flight hardware information for such growth in microgravity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

APCF:

advanced protein crystallization facility

ATGSP:

alanine doped triglycine sulfo-phosphate

BCF:

Burton–Cabrera–Frank

BS:

Bridgman–Stockbarger

CT:

computer tomography

DCAM:

diffusion-controlled crystallization apparatus for microgravity

DGS:

diglycine sulfate

DLATGS:

deuterated l-alanine-doped triglycine sulfate

DTGS:

deuterated triglycine sulfate

EDT:

ethylene dithiotetrathiafulvalene

FES:

fluid experiment system

HDPCG:

high-density protein crystal growth

HH-PCAM:

handheld protein crystallization apparatus for microgravity

HOE:

holographic optical element

IML-1:

International Microgravity Laboratory

IR:

infrared

KDP:

potassium dihydrogen phosphate

LAFB:

l-arginine tetrafluoroborate

LAP:

l-arginine phosphate

LHFB:

l-histidine tetrafluoroborate

MAP:

magnesium ammonium phosphate

MNA:

2-methyl-4-nitroaniline

NASA:

National Aeronautics and Space Administration

NIST:

National Institute of Standards and Technology

PCAM:

protein crystallization apparatus for microgravity

PCF:

primary crystallization field

PCF:

protein crystal growth facility

RTV:

room temperature vulcanizing

SL-3:

Spacelab-3

SL:

superlattice

STS:

space transportation system

TGS:

triglycine sulfate

TV:

television

References

  1. H.A. Meirs, F. Isaac: The spontaneous crystallization, Proc. R. Soc. Lond. A 79, 322–325 (1987)

    Article  ADS  Google Scholar 

  2. K. Sangwal: Growth kinetics and surface morphology of crystals grown from solutions: recent observations and their interpretations, Prog. Cryst. Growth Charact. Mater. 36(3), 163–248 (1998)

    Article  Google Scholar 

  3. I.F. Nicolau: Growth kinetics of potassium-dihydrogen phosphate crystals in solution, Krist. Tech. 9(11), 1255–1263 (1974)

    Article  Google Scholar 

  4. R. Janssen-Van Rosmalen, P. Bennema, J. Garside: The influence of volume diffusion on crystal growth, J. Cryst. Growth 29, 342–352 (1975)

    Article  ADS  Google Scholar 

  5. A. Chianese: Growth and dissolution of sodium perborate in aqueous solutions by using RDC technique, J. Cryst. Growth 91, 39–49 (1988)

    Article  ADS  Google Scholar 

  6. K. Sangwal: On the mechanism of crystal growth from solutions, J. Cryst. Growth 192, 200–214 (1998)

    Article  ADS  Google Scholar 

  7. Y. Wang, X.L. Yu, D.I. Sun, S.T. Yin: Mass transport and growth kinetics related to the interface supersaturation oh lithium formate monohydrate, Cryst. Res. Technol. 36(4/5), 441–448 (2001)

    Article  Google Scholar 

  8. N. Zaitseva, L. Carman: Rapid growth of KDP-type crystals, Prog. Cryst. Growth Charact. Mater. 43, 1–118 (2001)

    Article  Google Scholar 

  9. I.V. Melikhov, L.B. Berliner: Crystallization of salts from supersaturated solutions; diffusion kinetics, J. Cryst. Growth 46, 79–84 (1979)

    Article  ADS  Google Scholar 

  10. P. Bennema: Sprial growth and surface roughening: development since Burton, Cabrera and Frank, J. Cryst. Growth 69, 182–197 (1984)

    Article  ADS  Google Scholar 

  11. X.Y. Liu, K. Malwa, K. Tsukamoto: Heterogeneous two dimension nucleation and growth kinetics, J.  Chem. Phys. 106(5), 1870–1879 (1997)

    Article  ADS  Google Scholar 

  12. A.F. Izmailov, A.S. Myerson: Momentum and mass transfer in supersaturation solutions crystal growth from solution, J. Cryst. Growth 174, 263–368 (1997)

    Article  Google Scholar 

  13. M. Rak, K. Izdebski, A. Brozi: Kinetic Monte Carlo study of crystal growth from solution, Comput. Phys. Commun. 138, 250–263 (2001)

    Article  ADS  MATH  Google Scholar 

  14. F. Rosenberger, B. Mutaftschiev (Eds.): Interfacial Aspects of Phase Transformation (Reidel, Dordrecht 1982)

    Google Scholar 

  15. A.A. Chernov: Present day understanding of crystal growth from aqueous solutions, Prog. Cryst. Growth Charact. 26, 121–151 (1993)

    Article  Google Scholar 

  16. R. Mohan, A.S. Myerson: Growth kinetics: A thermodynamic approach, Chem. Eng. Sci. 57, 4277–4285 (2002)

    Article  Google Scholar 

  17. C.M. Pina, A. Putnis, J.M. Astilleros: The growth mechanisms of solid solutions crystallization from aqueous solutions, Chem. Geol. 204, 145–161 (2004)

    Article  Google Scholar 

  18. I. Sunagawa, K. Tsukamoto, K. Maiwa, K. Onuma: Growth and perfection of crystals from aqueous solution: Case studies on Barium nitrate and K-Alum, Prog. Cryst. Charact. 30, 153–190 (1995)

    Article  Google Scholar 

  19. W.R. Wilcox: Influence of convection on the growth of crystals from solution, J. Cryst. Growth 65, 133–142 (1983)

    Article  ADS  Google Scholar 

  20. I.V. Markov: Crystal Growth for Beginners (World Scientific, Hobohen 2004)

    Google Scholar 

  21. I. Sunagawa: Crystals Growth, Morphology and Perfection (Cambridge Univ. Press, Cambridge 2005)

    Book  Google Scholar 

  22. T. Ogawa: A phenomenological analysis of crystal growth from solutions as an irreversible process, Jpn. J. Appl. Phys. 16(5), 689–695 (1977)

    Article  ADS  Google Scholar 

  23. S. Veintemillas-Verdaguer: Chemical aspects of the effect of impurities in crystal growth, Prog. Cryst. Growth Charact. 32, 76–109 (1996)

    Google Scholar 

  24. K. Sangwal: Kinetics effects of impurities on the growth of single crystals from solutions, J. Cryst. Growth 203, 197–212 (1999)

    Article  ADS  Google Scholar 

  25. I. Owczarek, K. Sangwal: Effect of impurities on the growth of KDP crystals: Mechanism of adsorption on (101) faces, J. Cryst. Growth 102, 574–580 (1990)

    Article  ADS  Google Scholar 

  26. K. Sangwal: Effects of impurities on the crystal growth processes, Prog. Cryst. Charact. 32, 3–43 (1996)

    Article  Google Scholar 

  27. E. Kirkova, M. Djarova, B. Donkova: Inclusions of isomorphism impurities during crystallization from solutions, Prog. Cryst. Growth Charact. 32, 111–134 (1996)

    Article  Google Scholar 

  28. M. Rauls, K. Bartosch, M. Kind, S. Kuch, R. Lacmann, A. Mersmann: The influence of impurities on crystallization kinetics – A case study on ammonium sulfate, J. Cryst. Growth 312, 116–128 (2000)

    Article  ADS  Google Scholar 

  29. E. Mielniczek-Brzoska, K. Gielzak-Kocwin, K. Sangwal: Effects of Cu(II) ions on the growth of ammonium oxalate monohydrate crystals from aqueous solutions: Growth kinetics, segregation coefficient and characterization of incorporation sites, J. Cryst. Growth 212, 532–542 (2000)

    Article  ADS  Google Scholar 

  30. K. Sangwal, E. Mielniczek-Brzoska, J. Bore: Effect of Mn(II) ions on the growth of ammonium oxalate monohydrate crystals from aqueous solutions: Growth habit and surface morphology, Cryst. Res. Technol. 38(2), 103–112 (2003)

    Article  Google Scholar 

  31. N. Kubota, M. Yokota, J.W. Mullin: Supersaturation dependence of crystal growth in solutions in the presence of impurity, J. Cryst. Growth 182, 86–94 (1997)

    Article  ADS  Google Scholar 

  32. K. Sangwal, E. Mielniczek-Brzoska: On the effect of Cu(II) impurities on the growth kinetics of ammonium oxalate monohydrate crystals from aqueous solutions, Cryst. Res. Technol. 36(8-10), 837–849 (2001)

    Article  Google Scholar 

  33. K. Sangwal, E. Mielniczek-Brzoska, J. Bore: Study of segregation coefficient of cationic impurities in ammonium oxalate monohydrate crystals during growth from aqueous solutions, J. Cryst. Growth 244, 183–193 (2002)

    Article  ADS  Google Scholar 

  34. K. Sangwal, T. Palcznska: On the supersaturation and impurity concentration dependence of segregation coefficient in crystals grown from solutions, J. Cryst. Growth 212, 522–531 (2002)

    Article  ADS  Google Scholar 

  35. P.S. Delineshev: Growth of crystals in the presence of impurities, a hypotheses based on a kinetic approach, Cryst. Res. Technol. 33(6), 891–897 (1998)

    Article  Google Scholar 

  36. K. Sangwal: Kinetic effects of impurities on the growth of single crystals from solutions, J. Cryst. Growth 203, 197–212 (1999)

    Article  ADS  Google Scholar 

  37. A.S. Myerson, S.M. Jang: A comparison of binding energy an metastable zone width for adipic acid with various additives, J. Cryst. Growth 156, 459–466 (1995)

    Article  ADS  Google Scholar 

  38. D. Aquilano, M. Rubbo, G. Mantovani, G. Sgualdino, G. Vaccari: Equilibrium and growth forms of sucrose crystals in the h0l zone, J. Cryst. Growth 74, 10–20 (1986)

    Article  ADS  Google Scholar 

  39. D. Aquilano, M. Rubbo, G. Mantovani, G. Sgualdino, G. Vaccari: Equilibrium and growth forms of sucrose crystals in the h0l zone, J. Cryst. Growth 83, 77–83 (1987)

    Article  ADS  Google Scholar 

  40. A.A. Chernov, V.V. Sipyagin: Peculiarities in crystal growth aqueous solutions connected with their structure. In: Current Topics in Materials Science, Vol. 5, ed. by E. Kaldis (North-Holland, Amsterdam 1980) pp. 279–333

    Google Scholar 

  41. K. Byrappa, H. Klapper, T. Ohachi, R. Fornari (Eds.): Crystal Growth of Technologically Important Electronic Materials (Allied, New Delhi 2003)

    Google Scholar 

  42. M.D. Aggarwal, T. Gebre, A.K. Batra, M.E. Edwards, R.B. Lal, B.G. Penn, D.O. Frazier: Growth of nonlinear optical materials at Alabama University, Proc. SPIE 4813, 52–65 (2002)

    ADS  Google Scholar 

  43. M.D. Aggarwal, W.S. Wang, K. Bhat, B.G. Penn, D.O. Frazier: Photonic crystals: crystal growth processing and physical properties. In: Handbook of Advanced Electronic and Photonic Materials and Devices, Vol. 9, ed. by H.S. Nalwa (Academic, New York 2001) pp. 193–228

    Chapter  Google Scholar 

  44. H.K. Henisch: Crystal Growth in Gels (Dover, New York 1970)

    Google Scholar 

  45. A.F. Barton: Handbook of Solubility Parameters and Other Cohesion Parameters (CRC, Boca Raton 1983)

    Google Scholar 

  46. J. Novotny: A crystallizer for the investigation of conditions of growth of single crystals from solutions, Krist. Tech. 6(3), 343–352 (1971)

    Article  Google Scholar 

  47. M.D. Aggarwal, J. Choi, W.S. Wang, K. Bhat, R.B. Lal, A.D. Shields, B.G. Penn, D.O. Frazier: Solution growth of a novel nonlinear optical material: L-histidine tetrafluoroborate, J. Cryst. Growth 204, 179–182 (1999)

    Article  ADS  Google Scholar 

  48. A.K. Batra, S.C. Mathur: Reciprocating arrangement for solution crystal growth, Res. Ind. 29, 20–22 (1984)

    Google Scholar 

  49. W.S. Wang, M.D. Aggarwal, J. Choi, K. Bhat, T. Gebre, A.D. Shields, B.G. Penn, D.O. Frazier: Solvent effects and polymorphic transformation of organic nonlinear optical crystal L-pyroglutamic acid in solution growth processes. I. Solvent effects and growth morphology, J. Cryst. Growth 198/199, 578–582 (1999)

    Article  ADS  Google Scholar 

  50. C. Owens, K. Bhat, W.S. Wang, A. Tan, M.D. Aggarwal, B.G. Penn, D.O. Frazier: Bulk growth of high quality nonolinear optical crystals of L-arginine tetrafluoroborate (L-AFB), J. Cryst. Growth 225, 465–469 (2001)

    Article  ADS  Google Scholar 

  51. R.B. Lal, H.W. Zhang, W.S. Wang, M.D. Aggarwal, H.W.H. Lee, B.G. Penn: Crystal growth and optical properties of 4-aminobenzophenone crystals for NLO applications, J. Cryst. Growth 174, 393–397 (1997)

    Article  ADS  Google Scholar 

  52. H.W. Zhang, A.K. Batra, R.B. Lal: Growth of large methyl-(2,4-dinitrophenyl)-aminopropanoate: 2-methyl-4-nitroaniline crystals for nonlinear applications, J. Cryst. Growth 137, 141–144 (1994)

    Article  ADS  Google Scholar 

  53. M.R. Simmons: An investigation of crystals matrices of single crystals doped with rare earth ions. M.Sc. Thesis (Alabama Univ., Alabama 2002)

    Google Scholar 

  54. J.-M. Chang, A.K. Batra, R.B. Lal: Growth and characterization of doped TGS crystals for infrared devices, Cryst. Growth Des. 2(5), 431–435 (2002)

    Article  Google Scholar 

  55. M.D. Aggarwal, R.B. Lal: Simple low-cost reciprocating crystallizer for solution crystal growth, Rev. Sci. Instrum. 54, 772–773 (1983)

    Article  ADS  Google Scholar 

  56. A.K. Batra, C.R. Carmichael-Owens, M. Simmons, M.D. Aggarwal, R.B. Lal: Design of a solution crystal growth crystallizer with versatile electronic reciprocal motion control for a crystal holder, Cryst. Res. Technol. 40(8), 757–760 (2005)

    Article  Google Scholar 

  57. A.K. Batra, M.D. Aggarwal, R.B. Lal: Growth and characterization of doped DTGS crystals for infrared sensing devices, Mat. Lett. 57, 39–43 (2003)

    Article  Google Scholar 

  58. R.B. Lal, M.D. Aggarwal: Reciprocating crystallizer: Automatic crystallizer grows crystals from aqueous solutions, NASA Tech. Briefs 8, 419 (1984)

    Google Scholar 

  59. F. Jona, S. Shirane: Ferroelectric Crystals (Dover, New York 1993)

    Google Scholar 

  60. R.B. Lal, A.K. Batra: Growth and properties of triglycine (TGS) sulfate crystals: Review, Ferroelectrics 142, 51–82 (1993)

    Article  Google Scholar 

  61. E.A.D. White, J.D.C. Wood, V.M. Wood: The growth of large area, uniformly doped TGS crystals, J. Cryst. Growth 32, 149–156 (1976)

    Article  ADS  Google Scholar 

  62. B. Brezina, M. Havrankova, M. Vasa: Enhanced growth of non-polar {001} growth sectors of deuterated triglycine sulfate doped with L-alanine (LADTGS), Cryst. Res. Technol. 27(1), 13–20 (1992)

    Article  Google Scholar 

  63. S. Satapathy, S.K. Sharma, A.K. Karnal, V.K. Wadhawan: Effects of seed orientation on the growth of TGS crystals with large (010) facets needed for detector applications, J. Cryst. Growth 240, 196–202 (2002)

    Article  ADS  Google Scholar 

  64. M. Banan: Growth of pure and doped triglycine sulfate crystals for pyroelectric infrared detector applications. M.Sc. Thesis (Alabama A&M Univ., Alabama 1986)

    Google Scholar 

  65. D. Zhao-De: A new method of growth of ferroelectric crystal, Ferroelectrics 39, 1237–1240 (1981)

    Article  Google Scholar 

  66. F. Moravec, J. Novotny: Study on the growth of triglycine sulphate single crystals, Krist. Techn. 7, 891–902 (1972)

    Article  Google Scholar 

  67. W.K. Burton, N. Cabrera, F.C. Frank: The growth of crystals and the equilibrium structure of their surfaces, Philos. Trans. R. Soc. Lond. 243, 299–358 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. L.N. Rashkovich: Interferometric investigation of growth rate of 001 faces of triglycine sulfate at various supersaturation and temperature, Sov. Phys. Crystallogr. 28, 454–458 (1983)

    Google Scholar 

  69. J. Novotny, F. Moravec, Z. Solc: The role of surface and volume diffusion in the growth of TGS single crystals, Czech. J. Phys. B 23, 261–266 (1973)

    Article  ADS  Google Scholar 

  70. J. Novotny, F. Moravec: Growth of TGS from slightly supersaturated solutions, J. Cryst. Growth 11, 329–335 (1971)

    Article  ADS  Google Scholar 

  71. D.A. Reiss, R.L. Kroes, E.E. Anderson: Growth kinetics of the (001) face of TGS below the ferroelectric transition temperature, J. Cryst. Growth 84, 7–10 (1987)

    Article  ADS  Google Scholar 

  72. M. Banan, R.B. Lal, A.K. Batra, M.D. Aggarwal: Effect of poling on the morphology and growth rate of TGS crystals, Cryst. Res. Technol. 24(3), K53–K55 (1989)

    Article  Google Scholar 

  73. F. Moravec, J. Novotny: A contribution to the study of the influence of impurities on the growth and some physical properties of TGS single crystals, Krist. Techn. 6(3), 335–342 (1971)

    Article  Google Scholar 

  74. R.V. Whipps, R.S. Cosier, L.K. Bye: Orthorhombic diglycine sulphate, J. Mater. Sci. 7(12), 1476–1477 (1972)

    Article  ADS  Google Scholar 

  75. E. Dominquez, R. Jimenez, J. Mendiola, E.J. Vivas: Diglycine sulphate – An interesting new dielectric crystal species, J. Mater. Sci. 70(3), 363–364 (1972)

    Article  ADS  Google Scholar 

  76. M.S. Tsedrik, V.N. Ulasen, G.A. Zaborovski: Growing TGS and TGSe single crystals at various pH of solution, Krist. Techn. 10(1), 49–54 (1975)

    Article  Google Scholar 

  77. E.J. Weidmann, E.A.D. White, V.M. Wood: Induced growth anisotropy in TGS crystals, J. Mater. Sci. Lett. 7, 719–720 (1972)

    Article  ADS  Google Scholar 

  78. L. Szczepanska: Growth investigations of single crystal sulphates containing molecular glycine groups, Krist. Techn. 11, 265–271 (1976)

    Article  Google Scholar 

  79. L. Prokopova, J. Novotny, Z. Micka, V. Malina: Growth of triglycine sulphate crystals doped by cadmium phosphate, Cryst. Res. Technol. 36, 1189–1195 (2001)

    Article  Google Scholar 

  80. G.R. Pandya, D.D. Vyas: On growth and morphological studies of TGS single crystals, Cryst. Res. Technol. 16, 1353–1358 (1981)

    Google Scholar 

  81. R.B. Lal, S. Etminan, A.K. Batra: Effect of simultaneous organic and inorganic dopants on the characteristics of triglycine sulfate crystals, Proc. 9th IEEE Int. Symp. Appl. Ferroelectr. (1994) pp. 695–697

    Google Scholar 

  82. M. Banan, A.K. Batra, R.B. Lal: Growth and morphology of triglycine sulphate (TGS) crystals, J. Mater. Sci. Lett. 8, 1348–1349 (1989)

    Article  Google Scholar 

  83. N. Nakatani: Ferroelectric domain structure and internal bias field in DL-α-alanine-doped triglycine sulfate, Jpn. J. Appl. Phys. 30(12A), 3445–3449 (1991)

    Article  ADS  Google Scholar 

  84. J. Eisner: The physical properties of TGS single crystals, grown from aqueous TGS solutions containing aniline, Phys. Status Solidi 43, K1–K4 (1977)

    Article  ADS  Google Scholar 

  85. F. Moravec, J. Novotny, J. Strajblova: Single crystals of triglycine sulphate containing palladium, Czech J. Phys. 23, 855–862 (1977)

    Article  ADS  Google Scholar 

  86. A.S. Sidorkin, A.M. Kostsov: Exoelectron emission from a ferroelectric crystal of triglycine sulfate with defects, Sov. Phys. Solid State 33(8), 1383–1384 (1991)

    Google Scholar 

  87. L. Yang, A.K. Batra, R.B. Lal: Growth and characterization of TGS crystals grown by cooled sting technique, Ferroelectrics 118(1-4), 85–89 (1991)

    Article  Google Scholar 

  88. N. Nakatani: Ferroelectric domain structure and internal bias field in DL-α-alanine doped triglycine sulfate, Jpn. J. Appl. Phys. 30, 3445–3449 (1991)

    Article  ADS  Google Scholar 

  89. B. Brezina, M. Havrankova: Orientation of structure and crystals of TGS and TGS doped with D, al or L, al, Cryst. Res. Technol. 20, 781–786 (1985)

    Article  Google Scholar 

  90. G.M. Loiacono, J.P. Dougherty: Final Technical Report (Night Vision and Electro-optics Laboratories, Fort Belvoir 1978), Contract No. DAAK70–77-C-0098

    Google Scholar 

  91. G. Arunmozhi, E. De Matos Gomes, J. Ribeiro: Dielectric properties of L-asparagine doped TGS (Asp-TGS) crystals, Ferroelectrics 295, 87–95 (2003)

    Article  Google Scholar 

  92. S. Seif, K. Bhat, A.K. Batra, M.D. Aggarwal, R. B.Lal: Effect of Cr(III) impurity on the growth kinetics of potassium dihydrogen phosphate and triglycine sulfate grown from aqueous solutions, Mater. Lett. 58, 991–994 (2004)

    Article  Google Scholar 

  93. V.A. Kuznetov, T.M. Okhrimenko, M. Rak: Growth promoting effect of organic impurities on growth kinetics of KAP and KDP crystals, J. Cryst. Growth 193, 164–173 (1998)

    Article  ADS  Google Scholar 

  94. R.J. Davey: Industrial Crystallization, Vol. 78, ed. by E.J. de Jong, S.J. Jancic (North-Holand, Amsterdam 1979) pp. 169–198

    Google Scholar 

  95. O.W. Wang, C.S. Fang: Investigation of the solution status of TGS and ATGSP crystals, Cryst. Res. Technol. 27, 245–251 (1992)

    Article  Google Scholar 

  96. K. Meera, R. Muralindharan, A.K. Tripathi, P. Ramasamy: Growth and characterization of l-threonine, dl-threonine, l-methionine admixtured TGS crystals, J. Cryst. Growth 263, 524–531 (2004)

    Article  ADS  Google Scholar 

  97. G. Su, Y. He, H. Yao, Z. Shi, Q. Wu: A new pyroelectric crystal L-lysine-doped THS (LLTGS), J. Cryst. Growth 209, 220–222 (2000)

    Article  ADS  Google Scholar 

  98. J. Novotny, J. Zelinkay, F. Moravec: Broadband infrared detectors on the basis of PATGS/Pt(IV) single crystals, Sens. Actuators A 119, 300–304 (2005)

    Article  Google Scholar 

  99. S. Kalainathan, M.B. Margaret, T. Trusan: Morphological changes of L-asparagine doped TGS crystal, Cryst. Eng. 5, 71–78 (2002)

    Article  Google Scholar 

  100. http://www.nasa.gov/missions/index.html (last accessed August 9, 2009)

  101. R.B. Lal, R.L. Kroes: Solution growth of crystal on Spacelab-3, Proc. 24th AIAA Sci. Meet. (Reno 1985)

    Google Scholar 

  102. R.B. Lal, M.D. Aggarwal, R.L. Kroes, W.R. Wilcox: A new technique of solution crystal growth, Phys. Status Solidi (a) 80, 547–551 (1983)

    Article  ADS  Google Scholar 

  103. A.K. Batra, R.B. Lal, M.D. Aggarwal: Electrical properties of TGS crystals grown by new technique, J. Mater. Sci. Lett. 4, 1425–1427 (1985)

    Article  ADS  Google Scholar 

  104. R.B. Lal, M.D. Aggarwal, A.K. Batra, R.L. Kroes: Solution growth of crystals in zero-gravity, final technical report (NASA, Washington 1987), NASA contract number NAS8–32945

    Google Scholar 

  105. R.B. Lal: Solution growth of crystals in low-gravity, final technical report (1995), NASA contract number NAS8–36634

    Google Scholar 

  106. B. Steiner, R. Dobbyn, D. Black, H. Burdette, M. Kuriyama, R. Spal, L. van den Berg, A. Fripp, R. Simchick, R.B. Lal, A.K. Batra, D. Mathiesen, B. Ditchek: High resolution diffracting imaging of crystals grown, Microgravity and closely related terrestrial crystals (NIST, Gaithersburg 1991), Technical Note 1287

    Google Scholar 

  107. R.B. Lal, A.K. Batra, J.D. Trolinger, W.R. Wilcox: TGS crystal growth experiment on the first international microgravity laboratory (IML-1), Microgravity Q. 4(3), 186–198 (1994)

    Google Scholar 

  108. D.E. McRee: Practical Protein Crystallography (Academic Press, San Diego 1993) pp. 1–23

    Book  Google Scholar 

  109. G. Rhodes: Crystallography Made Crystal Clear (Academic, San Diego 1993) pp. 8–10

    Google Scholar 

  110. G. Rhodes: Crystallography Made Crystal Clear (Academic, San Diego 1993) pp. 29–38

    Book  Google Scholar 

  111. S.D. Durbin, G. Feher: Studies of crystal growth mechanisms of proteins by electron microscopy, J. Mol. Biol. 212, 763–774 (1990)

    Article  Google Scholar 

  112. E. Forsythe, M.L. Pusey: The effects of temperature and NaCl concentration on tetragonal lysozyme face growth rates, J. Cryst. Growth 139, 89–94 (1994)

    Article  ADS  Google Scholar 

  113. A. Nadaraja, E.L. Forsythe, M.L. Pusey: The averaged face growth rates of lysozyme crystals: The effect of temperature, J. Cryst. Growth 151, 163–172 (1995)

    Article  ADS  Google Scholar 

  114. W. Littke, C. John: Protein single crystal growth under microgravity, Science 225, 203–204 (1984)

    Article  ADS  Google Scholar 

  115. F. Rosenberger: Protein crystallization, J. Cryst. Growth 166, 40–54 (1996)

    Article  ADS  Google Scholar 

  116. W. Littke, C. John: Protein single crystal growth under microgravity, J. Cryst. Growth 76, 663–672 (1986)

    Article  ADS  Google Scholar 

  117. L.J. DeLucas, F.L. Suddath, R.S. Snyder, R. Naumann, M.B. Broom, M.L. Pusey, V. Yost, B. Herren, D.C. Carter, B. Nelson, E.J. Meehan, A. McPherson, C.E. Bugg: Preliminary investigations of protein crystal growth using the space shuttle, J. Cryst. Growth 76, 681–693 (1986)

    Article  ADS  Google Scholar 

  118. L.J. DeLucas, C.D. Smith, H.W. Smith, V.K. Senadhi, S.E. Senadhi, S.E. Ealick, D.C. Carter, R.S. Snyder, P.C. Weber, F.R. Salemme, D.H. Ohlendorf, H.M. Einspahr, L.L. Clancy, M.A. Navia, B.M. Mc-Keever, T.L. Nagabhushan, G. Nelson, A. McPherson, S. Koszelak, G. Taylor, D. Stammers, K. Powell, G. Darby, C.E. Bugg: Protein crystal growth in microgravity, Science 246, 651–653 (1989)

    Article  ADS  Google Scholar 

  119. S. Simic-Stefani, M. Kawaji, H.U. Hu: G-jitter induced motion of a protein crystal under microgravity, J. Cryst. Growth 294, 373–384 (2006)

    Article  ADS  Google Scholar 

  120. A. McPherson: Virus and protein crystal growth on earth and in microgravity, J. Phys. D 26, B104–B112 (1993)

    Article  ADS  Google Scholar 

  121. D.C. Carter, T.E. Dowling: Protein crystal growth apparatus for microgravity, US Patent 5643540 (1997)

    Google Scholar 

  122. D.C. Carter, B. Wright, T. Miller, J. Chapman, P. Twigg, K. Keeling, K. Moody, M. White, J. Click, J.R. Ruble, J.X. Ho, L. Adcock-Downey, T. Dowling, C.-H. Chang, P. Ala, J. Rose, B.C. Wang, J.-P. Declercq, C. Evrard, J. Rosenberg, J.-P. Wery, D. Clawson, M. Wardell, W. Stallings, A. Stevens: PCAM: A multi-user facility-based protein crystallization apparatus for microgravity, J. Cryst. Growth 196, 610–622 (1999)

    Article  ADS  Google Scholar 

  123. D.C. Carter, B. Wright, T. Miller, J. Chapman, P. Twigg, K. Keeling, K. Moody, M. White, J. Click, J.R. Ruble, J.X. Ho, L. Adcock-Downey, G. Bunick, J. Harp: Diffusion-controlled crystallization apparatus for microgravity (DCAM): Flight and ground-based applications, J. Cryst. Growth 196, 602–609 (1999)

    Article  ADS  Google Scholar 

  124. L.J. DeLucas, K.M. Moore, M.M. Long, R. Rouleau, T. Bray, W. Crysel, L. Weise: Protein crystal growth in space, past and future, J. Cryst. Growth 237–239, 1646–1650 (2002)

    Article  Google Scholar 

  125. J.P. Declercq, C. Evrard, D.C. Carter, B.S. Wright, G. Etienne, J. Parello: A crystal of a typical EF-hand protein grown under microgravity diffracts x-rays beyond 0.9 Åresolution, J. Cryst. Growth 196, 595–601 (1999)

    Article  ADS  Google Scholar 

  126. S. Gorti, E.L. Forsythe, M.L. Pusey: Measurable characteristics of lysozyme crystal growth, Acta Cryst. D 61, 837–843 (2005)

    Article  Google Scholar 

  127. http://science.nasa.gov/ssl/msad/pcg/ (last accessed August 9, 2009)

  128. D.C. Carter, K. Lim, J.X. Ho, B.S. Wright, P.D. Twigg, T.Y. Miller, J. Chapman, K. Keeling, J. Ruble, P.G. Vekilov, B.R. Thomas, F. Rosenberger, A.A. Chernov: Lower dimmer impurity incorporation may result in higher perfection of HEWL crystals grown in microgravity: a case study, J. Cryst. Growth 196, 623–637 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohan D. Aggarwal , Ashok K. Batra , Ravindra B. Lal , Benjamin G. Penn or Donald O. Frazier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Aggarwal, M.D., Batra, A.K., Lal, R.B., Penn, B.G., Frazier, D.O. (2010). Bulk Single Crystals Grown from Solution on Earth and in Microgravity. In: Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M. (eds) Springer Handbook of Crystal Growth. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74761-1_17

Download citation

Publish with us

Policies and ethics