Skip to main content

Mechanosensitive Channels: Their Mechanisms and Roles in Preserving Bacterial Ultrastructure During Adaptation to Environmental Changes

  • Chapter
Bacterial Physiology

The integrity of bacterial cells has long been identified with the possession of the peptidoglycan cell wall. However, the presence of “natural“ disruptive forces has been recognized for almost 60 years. Mitchell determined that bacteria possess an outwardly directed turgor pressure of greater than 4 atmospheres. Other early experiments indicated that the substantial pools of amino acids that are retained by bacteria could be released very rapidly by hypoosmotic shock. More recently, two new elements have been added to the equation, one of which is universal and the other may have more limited distribution. The first is the discovery of mechanosensitive channels that open rapidly, producing large holes in the cytoplasmic membrane, in response to increases in membrane tension. The second is that the cell wall is a dynamic structure, in which changes are required during adaptation to stress. The interplay between the two phenomena is examined in this chapter, with much emphasis being placed on the structure and function of mechanosensitive channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajouz B, Berrier C, Garrigues A, Besnard M, Ghazi A (1998) Release of thioredoxin via the mechanosensitive channel MscL during osmotic downshock of Escherichia coli cells. J Biol Chem 273:26670–26674.

    Article  PubMed  CAS  Google Scholar 

  • Anishkin A, Sukharev S (2004) Water dynamics and dewetting transition in the small mechanosensitive channel MscS. Biophys J 86:2883–2895.

    Article  PubMed  CAS  Google Scholar 

  • Bakker EP, Booth IR, Dinnbier U, Epstein W, Gajewska A (1987) Evidence for multiple K+ export systems in Escherichia coli. J Bacteriol 169:3743–3749.

    PubMed  CAS  Google Scholar 

  • Bartlett JL, Levin G, Blount P (2004) An in vivo assay identifies changes in residue accessibility on mechanosensitive channel gating. Proc Natl Acad Sci USA 101:10161–10165.

    Article  PubMed  CAS  Google Scholar 

  • Bass RB, Strop P, Barclay M, Rees DC (2002) Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298:1582–1587.

    Article  PubMed  CAS  Google Scholar 

  • Batiza AF, Kuo MMC, Yoshimura K, Kung C (2002) Gating the bacterial mechanosensitive channel MscL in vivo. Proc Natl Acad Sci USA 99:5643–5648.

    Article  PubMed  CAS  Google Scholar 

  • Berrier C, Coulombe A, Szabo I, Zoratti M, Ghazi A (1992) Gadolinium ion inhibits loss of metabolites induced by osmotic shock and large stretch-activated channels in bacteria. Eur J Biochem 206:559–565.

    Article  PubMed  CAS  Google Scholar 

  • Berrier C, Garrigues A, Richarme G, Ghazi A (2000) Elongation factor Tu and DnaK are transferred from the cytoplasm to the periplasm of Escherichia coli during osmotic downshock presumably via the mechanosensitive channel MscL. J Bacteriol 182:248–251.

    Article  PubMed  CAS  Google Scholar 

  • Blount P, Schroeder MJ, Kung C (1997) Mutations in a bacterial mechanosensitive channel change the cellular response to osmotic stress. J Biol Chem 272:32150–32157.

    Article  PubMed  CAS  Google Scholar 

  • Blount P, Sukharev SI, Schroeder MJ, Nagle SK, Kung C (1996) Single residue substitutions that change the gating properties of a mechanosensitive channel in Escherichia coli. Proc Natl Acad Sci USA 93:11652–11657.

    Article  PubMed  CAS  Google Scholar 

  • Booth IR (1985) Regulation of cytoplasmic pH in bacteria. Microbiological Reviews 49:359–378.

    PubMed  CAS  Google Scholar 

  • Booth IR, Cairney J, Sutherland L, Higgins CF (1988) Enteric bacteria and osmotic-stress—an integrated homeostatic system. J App Bacteriol 65:S35–S49.

    Google Scholar 

  • Booth IR et al. (2007a) Physiological Analysis of Bacterial Mechanosensitive Channels. Sies M, Haeussinger D (eds) Methods in Enzymology 428:47–61.

    Google Scholar 

  • Booth IR, Edwards MD, Black S, Schumann U, Miller S (2007b) Mechanosensitive channels in bacteria: signs of closure? Nature Reviews Microbiology 5(6):431–440.

    Article  PubMed  CAS  Google Scholar 

  • Booth IR, et al. (2007c) Structure-function relations of MscS. Current Topics in Membranes 58, in press.

    Google Scholar 

  • Britten RJ, McClure FT (1962) The amino acid pool in Escherichia coli. Microbiol Mol Biol Rev 26:292–335.

    CAS  Google Scholar 

  • Buurman ET, McLaggan D, Naprstek J, Epstein W (2004) Multiple paths for aberrant transport of K+ in Escherichia coli. J Bacteriol 186:4238–4245.

    Article  PubMed  CAS  Google Scholar 

  • Chang G, Spencer RH, Lee AT, Barclay MT, Rees DC (1998) Structure of the MscL homolog from Mycobacterium tuberculosis: A gated mechanosensitive ion channel. Science 282:2220–2226.

    Article  PubMed  CAS  Google Scholar 

  • Denome SA, Elf PK, Henderson TA, Nelson DE, Young KD (1999) Escherichia coli mutants lacking all possible combinations of eight penicillin binding proteins: viability, characteristics, and implications for peptidoglycan synthesis. J Bacteriol 181:3981–3993.

    PubMed  CAS  Google Scholar 

  • Edwards MD et al. (2005) Pivotal role of the glycine-rich TM3 helix in gating the MscS mechanosensitive channel. Nat Struct Mol Biol 12:113–119.

    Article  PubMed  CAS  Google Scholar 

  • Epstein W (1986) Osmoregulation by potassium-transport in Escherichia-coli. Fems Microbiology Reviews 39:73–78.

    Article  CAS  Google Scholar 

  • Epstein W, Davies M (1970) Potassium-dependent mutants of Escherichia coli K-12. J Bacteriol 101:836–843.

    PubMed  CAS  Google Scholar 

  • Folgering JH, Kuiper JM, de Vries AH, Engberts JB, Poolman B (2004) Lipid-mediated light activation of a mechanosensitive channel of large conductance. Langmuir 20:6985–6987.

    Article  PubMed  CAS  Google Scholar 

  • Glauner B, Holtje JV, Schwarz U (1988) The composition of the murein of Escherichia coli. J Biol Chem 263:10088–10095.

    PubMed  CAS  Google Scholar 

  • Goodell EW (1985) Recycling of murein by Escherichia coli. J Bacteriol 163(1):305–310.

    PubMed  CAS  Google Scholar 

  • Hengge-Aronis R (2002a) Recent insights into the general stress response regulatory network in Escherichia coli. J Mol Microbiol Biotechnol 4:341–346.

    PubMed  CAS  Google Scholar 

  • Hengge-Aronis R (2002b) Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66:373–395.

    Article  PubMed  CAS  Google Scholar 

  • Holtje J-V (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62:181–203.

    PubMed  CAS  Google Scholar 

  • Imhoff JF (1986) Osmoregulation and compatible solutes in eubacteria. FEMS Microbiology Reviews 39:57–66.

    CAS  Google Scholar 

  • Isaac L, Ware GC (1974) The flexibility of bacterial cell walls. J Appl Bacteriol 37:335–339.

    PubMed  CAS  Google Scholar 

  • Jordan SL, Glover J, Malcolm L, Thomson-Carter FM, Booth IR, Park SF (1999) Augmentation of killing of Escherichia coli O157 by combinations of lactate, ethanol, and low-pH conditions. Applied and Environmental Microbiology 65:1308–1311.

    PubMed  CAS  Google Scholar 

  • Kim S, Chamberlain AK, Bowie JU (2004) Membrane channel structure of Helicobacter pylori vacuolating toxin: Role of multiple GXXXG motifs in cylindrical channels. Proc Natl Acad Sci USA 101:5988–5991.

    Article  PubMed  CAS  Google Scholar 

  • Kloda A, Martinac B (2001) Structural and functional differences between two homologous mechanosensitive channels of Methanococcus jannaschii. EMBO J 20:1888–1896.

    Article  PubMed  CAS  Google Scholar 

  • Koo SP, Booth IR (1994) Quantitative analysis of growth stimulation by glycine betaine in Salmonella typhimurium. Microbiology 140(Pt 3):617–621.

    Article  PubMed  CAS  Google Scholar 

  • Kung C (2005) A possible unifying principle for mechanosensation. Nature 436:647–654.

    Article  PubMed  CAS  Google Scholar 

  • Levina N, Totemeyer S, Stokes NR, Louis P, Jones MA, Booth IR (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18:1730–1737.

    Article  PubMed  CAS  Google Scholar 

  • Li C, Edwards MD, Hocherl J, Roth J, Booth IR (2007) Identification of mutations that alter the gating of the E. coli mechanosensitive channel protein, MscK. Mol Microbiol 64(2):560–574.

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Moe PC, Chandrasekaran S, Booth IR, Blount P (2002) Ionic regulation of MscK, a mechanosensitive channel from Escherichia coli. EMBO J 21:5323–5330.

    Article  PubMed  CAS  Google Scholar 

  • Mackinnon R (2000) Mechanism of ion conduction and selectivity in K+ channels. J Gen Physiol 116:17 (abstract).

    Google Scholar 

  • Martinac B, Adler J, Kung C (1990) Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348:261–263.

    Article  PubMed  CAS  Google Scholar 

  • Martinac B, Buehner M, Delcour AH, Adler J, Kung C (1987) Pressure-sensitive ion channel in Escherichia coli. Proc Natl Acad Sci USA 84:2297–2301.

    Article  PubMed  CAS  Google Scholar 

  • McLaggan D et al. (2002) Analysis of the kefA2 mutation suggests that KefA is a cation-specific channel involved in osmotic adaptation in Escherichia coli. Mol Micro 43:521–536.

    Article  CAS  Google Scholar 

  • Mclaggan D, Naprstek J, Buurman ET, Epstein W (1994) Interdependence of K+ and glutamate accumulation during osmotic adaptation of Escherichia-coli. J Biol Chem 269:1911–1917.

    PubMed  CAS  Google Scholar 

  • Miller S, Bartlett W, Chandrasekaran S, Simpson S, Edwards M, Booth IR (2003a) Domain organization of the MscS mechanosensitive channel of Escherichia coli. EMBO J 22:36–46.

    Article  PubMed  CAS  Google Scholar 

  • Miller S, Edwards MD, Ozdemir C, Booth IR (2003b) The closed structure of the MscS mechanosensitive channel—Cross-linking of single cysteine mutants. J Biol Chem 278:32246–32250.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P, Moyle J (1956) Osmotic function and structure in bacteria. In: Spooner E, Stocker B (eds) Bacterial Anatomy. Cambridge University Press, Cambridge, pp 150–180.

    Google Scholar 

  • Moe PC, Levin G, Blount P (2000) Correlating a protein structure with function of a bacterial mechanosensitive channel. J Biol Chem 275:31121–31127.

    Article  PubMed  CAS  Google Scholar 

  • Nestorovich EM, Danelon C, Winterhalter M, Bezrukov SM (2002) Designed to penetrate: time-resolved interaction of single antibiotic molecules with bacterial pores. Proc Natl Acad Sci USA 99:9789–9794.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen T, Clare B, Guo W, Martinac B (2005) The effects of parabens on the mechanosensitive channels of E. coli. Eur Biophys J 34:389–395.

    Article  PubMed  CAS  Google Scholar 

  • Nikaido H (1996) Outer membrane. In: Neidhardt F, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (ed) Escherichia coli and Salmonella typhimurium Cellular and Molecular Biology. ASM Press, Washington DC, pp 29–47.

    Google Scholar 

  • Nikaido H, Vaara M (1985) Molecular basis of outer membrane permeability. Microbiological Reviews 19:1–32.

    Google Scholar 

  • Nomura T, Sokabe M, Yoshimura K (2006) Lipid-protein interaction of the MscS mechanosensitive channel examined by scanning mutagenesis. Biophys J 91:2874–2881.

    Article  PubMed  CAS  Google Scholar 

  • Ou X, Blount P, Hoffman RJ, Kung C (1998) One face of a transmembrane helix is crucial in mechanosensitive channel gating. Proc Natl Acad Sci USA 95:11471–11475.

    Article  PubMed  CAS  Google Scholar 

  • Perozo E, Cortes DM, Sompornpisut P, Kloda A, Martinac B (2002a) Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418:942–948.

    Article  PubMed  CAS  Google Scholar 

  • Perozo E, Kloda A, Cortes DM, Martinac B (2001) Site-directed spin-labeling analysis of reconstituted MscL in the closed state. J Gen Physiol 118:193–206.

    Article  PubMed  CAS  Google Scholar 

  • Perozo E, Kloda A, Cortes DM, Martinac B (2002b) Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat Struct Biol 9:696–703.

    Article  PubMed  CAS  Google Scholar 

  • Perozo E, Rees DC (2003) Structure and mechanism in prokaryotic mechanosensitive channels. Current Opin Struct Biol 13:432–442.

    Article  CAS  Google Scholar 

  • Pivetti CD et al. (2003) Two families of mechanosensitive channel proteins. Microbiol Mol Biol Rev 67:66–85.

    Article  PubMed  CAS  Google Scholar 

  • Poolman B, Spitzer JJ, Wood JM (2004) Bacterial osmosensing: roles of membrane structure and electrostatics in lipid-protein and protein-protein interactions. Biochim Biophys Acta 1666:88–104.

    Article  PubMed  CAS  Google Scholar 

  • Powl AM, Carney J, Marius P, East JM, Lee AG (2005) Lipid interactions with bacterial channels: fluorescence studies. Biochem Soc Trans 33:905–909.

    Article  PubMed  CAS  Google Scholar 

  • Rhoads DB, Epstein W (1978) Cation transport in Escherichia coli. IX. Regulation of K+ transport. J Gen Physiol 72(3):283–295.

    Article  PubMed  CAS  Google Scholar 

  • Roe AJ, Mclaggan D, Davidson I, O’Byrne C, Booth IR (1998) Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids. J Bacteriol 180:767–772.

    PubMed  CAS  Google Scholar 

  • Santos JM, Freire P, Vicente M, Arraiano CM (1999) The stationary-phase morphogene bolA from Escherichia coli is induced by stress during early stages of growth. Mol Microbiol 32:789–798.

    Article  PubMed  CAS  Google Scholar 

  • Schleyer M, Schmid R, Bakker EP (1993) Transient, specific and extremely rapid release of osmolytes from growing cells of Escherichia coli K-12 exposed to hypoosmotic shock. Arch Microbiol 160:424–431.

    Article  PubMed  CAS  Google Scholar 

  • Shapovalov G, Lester HA (2004) Gating transitions in bacterial ion channels measured at 3 μs resolution. J Gen Physiol 124:151–161.

    Article  PubMed  CAS  Google Scholar 

  • Smisterova J, van Deemter M, van der Schaaf G, Meijberg W, Robillard G (2005) Channel protein-containing liposomes as delivery vehicles for the controlled release of drugs—optimization of the lipid composition. J Control Release 101:382–383.

    PubMed  CAS  Google Scholar 

  • Steinbacher S, Bass R, Strop P, Rees DC (2007) Structures of the prokaryotic mechanosensitive channels MscL and MscS. Current Topics in Membranes 58:1–24.

    Article  CAS  Google Scholar 

  • Stokes NR et al. (2003) A role for mechanosensitive channels in survival of stationary phase: Regulation of channel expression by RpoS. Proc Natl Acad Sci USA 100:15959–15964.

    Article  PubMed  CAS  Google Scholar 

  • Strom AR, Kaasen I (1993) Trehalose metabolism in Escherichia coli; protection and stress regulation of gene expression. Mol Microbiol 8:205–210.

    Article  PubMed  CAS  Google Scholar 

  • Strop P, Bass R, Rees DC (2003) Prokaryotic mechanosensitive channels. Adv Protein Chem 63:177–209.

    Article  PubMed  CAS  Google Scholar 

  • Sukharev S (2000) Pulling the channel in many dimensions. Trends Microbiol 8:12–13.

    Article  PubMed  CAS  Google Scholar 

  • Sukharev S (2002) Purification of the small mechanosensitive channel of Escherichia coli (MscS): the subunit structure, conduction, and gating characteristics in liposomes. Biophys J 83:290–298.

    Article  PubMed  CAS  Google Scholar 

  • Sukharev SI, Blount P, Martinac B, Blattner FR, Kung C (1994a) A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368:265–268.

    Article  PubMed  CAS  Google Scholar 

  • Sukharev S, Durell SR, Guy HR (2001) Structural models of the MscL gating mechanism. Biophys J 81(2):917–936.

    Article  PubMed  CAS  Google Scholar 

  • Sukharev SI, Martinac B, Arshavsky VY, Kung C (1993) Two types of mechanosensitive channels in the Escherichia coli cell envelope: solubilization and functional reconstitution. Biophys J 65:177–183.

    Article  PubMed  CAS  Google Scholar 

  • Sukharev SI, Sigurdson WJ, Kung C, Sachs F (1999) Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J Gen Physiol 113:525–540.

    Article  PubMed  CAS  Google Scholar 

  • Szabo I, Petronilli V, Zoratti M (1992) A patch-clamp study of Bacillus subtilis. Biochim Biophys Acta 1112:29–38.

    Article  PubMed  CAS  Google Scholar 

  • Szabo I, Petronilli V, Zoratti M (1993) A patch-clamp investigation of the Streptococcus faecalis cell membrane. J Membr Biol 131:203–218.

    Article  PubMed  CAS  Google Scholar 

  • Templin MF, Ursinus A, Holtje JV (1999) A defect in cell wall recycling triggers autolysis during the stationary growth phase of Escherichia coli. EMBO J 18:4108–4117.

    Article  PubMed  CAS  Google Scholar 

  • Tomasz A (1979) From penicillin-binding proteins to the lysis and death of bacteria: a 1979 view. Rev Infect Dis 1:434–467.

    PubMed  CAS  Google Scholar 

  • van den Bogaart G, Krasnikov V, Poolman B (2007) Dual-color fluorescence-burst analysis to probe protein efflux through the mechanosensitive channel MscL. Biophys J 92:1233–1240.

    Article  PubMed  Google Scholar 

  • Vollmer W, Holtje JV (2001) Morphogenesis of Escherichia coli. Curr Opin Microbiol 4:625–633.

    Article  PubMed  CAS  Google Scholar 

  • Vollmer W, Holtje JV (2004) The architecture of the murein (peptidoglycan) in Gram-negative bacteria: vertical scaffold or horizontal layer(s)? J Bacteriol 186:5978–5987.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura K, Nomura T, Sokabe M (2004) Loss-of-function mutations at the rim of the funnel of mechanosensitive channel MscL. Biophys J 86:2113–2120.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Booth, I.R., Miller, S., Rasmussen, A., Rasmussen, T., Edwards, M.D. (2008). Mechanosensitive Channels: Their Mechanisms and Roles in Preserving Bacterial Ultrastructure During Adaptation to Environmental Changes. In: El-Sharoud, W. (eds) Bacterial Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74921-9_3

Download citation

Publish with us

Policies and ethics