Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 321))

Abstract

Recognition of the microbial world is mediated chiefly by a small group of immune receptors that activate a characteristic host inflammatory response, the innate immune response. Known as the Toll-like receptors (TLRs), these molecules are represented among most metazoans. In mammals, forward genetic analysis of the lipopolysaccharide (LPS) response led to the identification of TLR4 as the LPS receptor. Through a combination of forward and reverse genetic studies, a relatively detailed understanding of the functions of mammalian TLRs has now been achieved. As discussed here, mutagenesis has revealed proteins that participate in TLR signaling pathways, and informed our understanding of the subtleties of these molecules’ structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M, Nakanishi K, Akira S (1998) Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9:143–150

    Article  PubMed  CAS  Google Scholar 

  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732–738

    Article  PubMed  CAS  Google Scholar 

  • Andersson J, Sjoberg O, Moller G (1972) Induction of immunoglobulin and antibody synthesis in vitro by lipopolysaccharides. Eur J Immunol 2:349–353

    Article  PubMed  CAS  Google Scholar 

  • Beutler B, Greenwald D, Hulmes JD, Chang M, Pan YC, Mathison J, Ulevitch R, Cerami A (1985a) Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature 316:552–554

    Article  PubMed  CAS  Google Scholar 

  • Beutler B, Mahoney J, Le Trang N, Pekala P, Cerami A (1985b) Purification of cachectin, a lipoprotein lipase-suppressing hormone secreted by endotoxin-induced RAW 264.7 cells. J Exp Med 161:984–995

    Article  PubMed  CAS  Google Scholar 

  • Beutler B, Milsark IW, Cerami A (1985c) Passive immunization against cachectin/tumor necrosis factor (TNF) protects mice from the lethal effect of endotoxin. Science 229:869–871

    Article  PubMed  CAS  Google Scholar 

  • Beutler B, Du X, Xia Y (2007a) Precis on forward genetics in mice. Nat Immunol 8:659–664

    Article  PubMed  CAS  Google Scholar 

  • Beutler B, Eidenschenk C, Crozat K, Imler JL, Takeuchi O, Hoffmann JA, Akira S (2007b) Genetic analysis of resistance to viral infection. Nat Rev Immunol 7:753–766

    Article  PubMed  CAS  Google Scholar 

  • Bhat N, Perera PY, Carboni JM, Blanco J, Golenbock DT, Mayadas TN, Vogel SN (1999) Use of a photoactivatable taxol analogue to identify unique cellular targets in murine macrophages: identification of murine CD18 as a major taxol-binding protein and a role for Mac-1 in taxol-induced gene expression. J Immunol 162:7335–7342

    PubMed  CAS  Google Scholar 

  • Bright SW, Chen TY, Flebbe LM, Lei MG, Morrison DC (1990) Generation and characterization of hamster-mouse hybridomas secreting monoclonal antibodies with specificity for lipopolysaccharide receptor. J Immunol 145:1–7

    PubMed  CAS  Google Scholar 

  • Brinkmann MM, Spooner E, Hoebe K, Beutler B, Ploegh HL, Kim YM (2007) The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. J Cell Biol 177:265–275

    Article  PubMed  CAS  Google Scholar 

  • Casrouge A, Zhang SY, Eidenschenk C, Jouanguy E, Puel A, Yang K, Alcais A, Picard C, Mahfoufi N, Nicolas N, Lorenzo L, Plancoulaine S, Senechal B, Geissmann F, Tabeta K, Hoebe K, Du X, Miller RL, Heron B, Mignot C, de Villemeur TB, Lebon P, Dulac O, Rozenberg F, Beutler B, Tardieu M, Abel L, Casanova JL (2006) Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 314:308–312

    Article  PubMed  CAS  Google Scholar 

  • Christensen SR, Shupe J, Nickerson K, Kashgarian M, Flavell RA, Shlomchik MJ (2006) Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25:417–428

    Article  PubMed  CAS  Google Scholar 

  • Coutinho A, Gronowicz E (1975) Genetical control of B-cell responses. III. Requirement for functional mitogenicity of the antigen in thymus-independent specific responses. J Exp Med 141:753–760

    PubMed  CAS  Google Scholar 

  • Coutinho A, Meo T (1978) Genetic basis for unresponsiveness to lipopolysaccharide in C57BL/10Cr mice. Immunogenetics 7:17–24

    Article  Google Scholar 

  • Coutinho A, Forni L, Melchers F, Watanabe T (1977) Genetic defect in responsiveness to the B cell mitogen lipopolysaccharide. Eur J Immunol 7:325–328

    Article  PubMed  CAS  Google Scholar 

  • Coutinho A, Forni L, Watanabe T (1978) Genetic and functional characterization of an antiserum to the lipid A-specific triggering receptor on murine B lymphocytes. Eur J Immunol 8:63–67

    Article  PubMed  CAS  Google Scholar 

  • de la Cruz I, Levin JZ, Cummins C, Anderson P, Horvitz HR (2003) sup-9, sup-10, and unc-93 may encode components of a two-pore K+ channel that coordinates muscle contraction in Caenorhabditis elegans. J Neurosci 23:9133–9145

    PubMed  Google Scholar 

  • Fitzgerald KA, Palsson-McDermott EM, Bowie AG, Jefferies CA, Mansell AS, Brady G, Brint E, Dunne A, Gray P, Harte MT, McMurray D, Smith DE, Sims JE, Bird TA, O’Neill LA (2001) Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413:78–83

    Article  PubMed  CAS  Google Scholar 

  • Flaherty SF, Golenbock DT, Milham FH, Ingalls RR (1997) CD11/CD18 leukocyte integrins: new signaling receptors for bacterial endotoxin. J Surg Res 73:85–89

    Article  PubMed  CAS  Google Scholar 

  • Forni L, Coutinho A (1978) An antiserum which recognizes lipopolysaccharide-reactive B cells in the mouse. Eur J Immunol 8:56–62

    Article  PubMed  CAS  Google Scholar 

  • Gavin AL, Hoebe K, Duong B, Ota T, Martin C, Beutler B, Nemazee D (2006) Adjuvant-enhanced antibody responses in the absence of toll-like receptor signaling. Science 314:1936–1938

    Article  PubMed  CAS  Google Scholar 

  • Georgel P, Meister M, Kappler C, Lemaitre B, Reichhart JM, Hoffmann JA (1993) Insect immunity: the diptericin promoter contains multiple functional regulatory sequences homologous to mammalian acute-phase response elements. Biochem Biophys Res Commun 197:508–517

    Article  PubMed  CAS  Google Scholar 

  • Georgel P, Naitza S, Kappler C, Ferrandon D, Zachary D, Swimmer C, Kopczynski C, Duyk G, Reichhart JM, Hoffmann JA (2001) Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis. Dev Cell 1:503–514

    Article  PubMed  CAS  Google Scholar 

  • Georgel P, Jiang Z, Kunz S, Janssen E, Mols J, Hoebe K, Bahram S, Oldstone MB, Beutler B (2007) Vesicular stomatitis virus glycoprotein G activates a specific antiviral Toll-like receptor 4-dependent pathway. Virology 362:304–313

    Article  PubMed  CAS  Google Scholar 

  • Golenbock DT, Hampton RY, Raetz CR, Wright SD (1990) Human phagocytes have multiple lipid A-binding sites. Infect Immun 58:4069–4075

    PubMed  CAS  Google Scholar 

  • Hacker H, Redecke V, Blagoev B, Kratchmarova I, Hsu LC, Wang GG, Kamps MP, Raz E, Wagner H, Hacker G, Mann M, Karin M (2006) Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439:204–207

    Article  PubMed  CAS  Google Scholar 

  • Havell EA (1987) Production of tumor necrosis factor during murine listeriosis. J Immunol 139:4225–4231

    PubMed  CAS  Google Scholar 

  • Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103

    Article  PubMed  CAS  Google Scholar 

  • Haziot A, Ferrero E, Kontgen F, Hijiya N, Yamamoto S, Silver J, Stewart CL, Goyert SM (1996) Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice. Immunity 4:407–414

    Article  PubMed  CAS  Google Scholar 

  • Heil F, Ahmad-Nejad P, Hemmi H, Hochrein H, Ampenberger F, Gellert T, Dietrich H, Lipford G, Takeda K, Akira S, Wagner H, Bauer S (2003) The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur J Immunol 33:2987–2997

    Article  PubMed  CAS  Google Scholar 

  • Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:740–745

    Article  PubMed  CAS  Google Scholar 

  • Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K, Akira S (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3:196–200

    Article  PubMed  CAS  Google Scholar 

  • Heppner G, Weiss DW (1965) High susceptibility of strain A mice to endotoxin and endotoxin-red blood cell mixtures. J Bacteriol 90:696–703

    PubMed  CAS  Google Scholar 

  • Hoebe K, Du X, Georgel P, Janssen E, Tabeta K, Kim SO, Goode J, Lin P, Mann N, Mudd S, Crozat K, Sovath S, Han J, Beutler B (2003) Identification of Lps2 as a key transducer of MyD88-independent TIR signaling. Nature 424:743–748

    Article  PubMed  CAS  Google Scholar 

  • Hoebe K, Georgel P, Rutschmann S, Du X, Mudd S, Crozat K, Sovath S, Shamel L, Hartung T, Zahringer U, Beutler B (2005) CD36 is a sensor of diacylglycerides. Nature 433:523–527

    Article  PubMed  CAS  Google Scholar 

  • Honda K, Yanai H, Mizutani T, Negishi H, Shimada N, Suzuki N, Ohba Y, Takaoka A, Yeh WC, Taniguchi T (2004) Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling. Proc Natl Acad Sci U S A 101:15416–15421

    Article  PubMed  CAS  Google Scholar 

  • Horng T, Barton GM, Medzhitov R (2001) TIRAP: an adapter molecule in the Toll signaling pathway. Nat Immunol 2:835–841

    Article  PubMed  CAS  Google Scholar 

  • Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162:3749–3752

    PubMed  CAS  Google Scholar 

  • Huber M, Kalis C, Keck S, Jiang Z, Georgel P, Du X, Shamel L, Sovath S, Mudd S, Beutler B, Galanos C, Freudenberg MA (2006) R-form LPS, the master key to the activation ofTLR4/MD-2-positive cells. Eur J Immunol 36:701–711

    Article  PubMed  CAS  Google Scholar 

  • Ingalls RR, Golenbock DT (1995) CD11c/CD18, a transmembrane signaling receptor for lipopolysaccharide. J Exp Med 181:1473–1479

    Article  PubMed  CAS  Google Scholar 

  • Ingalls RR, Arnaout MA, Golenbock DT (1997) Outside-in signaling by lipopolysaccharide through a tailless integrin. J Immunol 159:433–438

    PubMed  CAS  Google Scholar 

  • Ingalls RR, Arnaout MA, Delude RL, Flaherty S, Savedra R Jr, Golenbock DT (1998a) The CD11/CD18 integrins: characterization of three novel LPS signaling receptors. Prog Clin Biol Res 397:107–117

    PubMed  CAS  Google Scholar 

  • Ingalls RR, Monks BG, Savedra R Jr, Christ WJ, Delude RL, Medvedev AE, Espevik T, Golenbock DT (1998b) CD11/CD18 and CD14 share a common lipid A signaling pathway. J Immunol 161:5413–5420

    PubMed  CAS  Google Scholar 

  • Ingalls RR, Heine H, Lien E, Yoshimura A, Golenbock D (1999) Lipopolysaccharide recognition, CD14, and lipopolysaccharide receptors. Infect Dis Clin North Am 13:341–53, vii

    Article  PubMed  CAS  Google Scholar 

  • Janssen E, Tabeta K, Barnes MJ, Rutschmann S, McBride S, Bahjat KS, Schoenberger SP, Theofilopoulos AN, Beutler B, Hoebe K (2006) Efficient T cell activation via a Toll-interleukin 1 receptor-independent pathway. Immunity 24:787–799

    Article  PubMed  CAS  Google Scholar 

  • Jiang Z, Georgel P, Du X, Shamel L, Sovath S, Mudd S, Huber M, Kalis C, Keck S, Galanos C, Freudenberg M, Beutler B (2005) CD14 is required for MyD88-independent LPS signaling. Nat Immunol 6:565–570

    Article  PubMed  CAS  Google Scholar 

  • Jiang Z, Georgel P, Li C, Choe J, Crozat K, Rutschmann S, Du X, Bigby T, Mudd S, Sovath S, Wilson IA, Olson A, Beutler B (2006) Details of Toll-like receptor:adapter interaction revealed by germ-line mutagenesis. Proc Natl Acad Sci U S A 103:10961–10966

    Article  PubMed  CAS  Google Scholar 

  • Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, Lee H, Lee JO (2007) Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130:1071–1082

    Article  PubMed  CAS  Google Scholar 

  • Kabir S, Rosenstreich DL (1977) Binding of bacterial endotoxin to murine spleen lymphocytes. Infect Immun 15:156–164

    PubMed  CAS  Google Scholar 

  • Kalis C, Kanzler B, Lembo A, Poltorak A, Galanos C, Freudenberg MA (2003) Toll-like receptor 4 expression levels determine the degree of LPS-susceptibility in mice. Eur J Immunol 33:798–805

    Article  PubMed  CAS  Google Scholar 

  • Kappler C, Meister M, Lagueux M, Gateff E, Hoffmann JA, Reichhart JM (1993) Insect immunity. Two 17 bp repeats nesting a kappa B-related sequence confer inducibility to the diptericin gene and bind a polypeptide in bacteria-challenged Drosophila. EMBO J 12:1561–1568

    PubMed  CAS  Google Scholar 

  • Kawai T, Sato S, Ishii KJ, Coban C, Hemmi H, Yamamoto M, Terai K, Matsuda M, Inoue J, Uematsu S, Takeuchi O, Akira S (2004) Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol 5:1061–1068

    Article  PubMed  CAS  Google Scholar 

  • Kim HM, Park BS, Kim JI, Kim SE, Lee J, Oh SC, Enkhbayar P, Matsushima N, Lee H, Yoo OJ, Lee JO (2007) Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell 130:906–917

    Article  PubMed  CAS  Google Scholar 

  • Kindler V, Sappino AP, Grau GE, Piguet PF, Vassalli P (1989) The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell 56:731–740

    Article  PubMed  CAS  Google Scholar 

  • Lei MG, Morrison DC (1988a) Specific endotoxic lipopolysaccharide-binding proteins on murine splenocytes. I. Detection of lipopolysaccharide-binding sites on splenocytes and splenocyte subpopulations. J Immunol 141:996–1005

    PubMed  CAS  Google Scholar 

  • Lei MG, Morrison DC (1988b) Specific endotoxic lipopolysaccharide-binding proteins on murine splenocytes. II. Membrane localization and binding characteristics. J Immunol 141:1006–1011

    PubMed  CAS  Google Scholar 

  • Lei MG, Morrison DC (1993) Evidence that lipopolysaccharide and pertussis toxin bind to different domains on the same p73 receptor on murine splenocytes. Infect Immun 61:1359–1364

    PubMed  CAS  Google Scholar 

  • Lei MG, Flebbe L, Roeder D, Morrison DC (1990) Identification and characterization of lipopolysaccharide receptor molecules on mammalian lymphoid cells. Adv Exp Med Biol 256:445–466

    PubMed  CAS  Google Scholar 

  • Lei MG, Qureshi N, Morrison DC (1993) Lipopolysaccharide (LPS) binding to 73-kDa and 38-kDa surface proteins on lymphoreticular cells: preferential inhibition of LPS binding to the former by Rhodopseudomonas sphaeroides lipid A. Immunol Lett 36:245–250

    Article  PubMed  CAS  Google Scholar 

  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983

    Article  PubMed  CAS  Google Scholar 

  • Lynn WA, Raetz CR, Qureshi N, Golenbock DT (1991) Lipopolysaccharide-induced stimulation of CD11b/CD18 expression on neutrophils. Evidence of specific receptor-based response and inhibition by lipid A-based antagonists. J Immunol 147:3072–3079

    PubMed  CAS  Google Scholar 

  • McHale L, Tan X, Koehl P, Michelmore RW (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biol 7:212

    Article  PubMed  CAS  Google Scholar 

  • McWhirter SM, Fitzgerald KA, Rosains J, Rowe DC, Golenbock DT, Maniatis T (2004) IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc Natl Acad Sci U S A 101:233–238

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity [see comments]. Nature 388:394–397

    Article  PubMed  CAS  Google Scholar 

  • Meister M, Braun A, Kappler C, Reichhart JM, Hoffmann JA (1994) Insect immunity. A transgenic analysis in Drosophila defines several functional domains in the diptericin promoter. EMBO J 13:5958–5966

    PubMed  CAS  Google Scholar 

  • Meylan E, Burns K, Hofmann K, Blancheteau V, Martinon F, Kelliher M, Tschopp J (2004) RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol 5:503–507

    Article  PubMed  CAS  Google Scholar 

  • Michalek SM, Moore RN, McGhee JR, Rosenstreich DL, Mergenhagen SE (1980) The primary role of lymphoreticular cells in the mediation of host responses to bacterial endotoxin. J Infect Dis 141:55–63

    PubMed  CAS  Google Scholar 

  • Muzio M, Ni J, Feng P, Dixit VM (1997) IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278:1612–1615

    Article  PubMed  CAS  Google Scholar 

  • Nemazee D, Gavin A, Hoebe K, Beutler B (2006) Immunology: Toll-like receptors and antibody responses. Nature 441:E4

    Article  PubMed  CAS  Google Scholar 

  • Nomura N, Miyajima N, Sazuka T, Tanaka A, Kawarabayasi Y, Sato S, Nagase T, Seki N, Ishikawa K, Tabata S (1994) Prediction of the coding sequences of unidentified human genes. I. The coding sequences of 40 new genes (KIAA0001-KIAA0040) deduced by analysis of randomly sampled cDNA clones from human immature myeloid cell line KG-1. DNA Res 1:27–35

    Article  PubMed  CAS  Google Scholar 

  • Ohto U, Fukase K, Miyake K, Satow Y (2007) Crystal structures of human MD-2 and its complex with antiendotoxic lipid IVa. Science 316:1632–1634

    Article  PubMed  CAS  Google Scholar 

  • Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T (2003a) TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol 4:161–171

    Article  PubMed  CAS  Google Scholar 

  • Oshiumi H, Sasai M, Shida K, Fujita T, Matsumoto M, Seya T (2003b) TIR-containing adapter molecule (TICAM)-2, a bridging adapter recruiting to toll-like receptor 4 TICAM-1 that induces interferon-beta. J Biol Chem 278:49751–49762

    Article  PubMed  CAS  Google Scholar 

  • Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, Schroeder L, Aderem A (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci U S A 97:13766–13771

    Article  PubMed  CAS  Google Scholar 

  • Peavy DL, Adler WH, Smith RT (1970) The mitogenic effect of endotoxin and staphylococcal enterotoxin B on mouse spleen cells and human peripheral lymphocytes. J Immunol 105:1453–1458

    PubMed  CAS  Google Scholar 

  • Peiffer-Schneider S, Schutte BC, Frees KL, Williamson K, Swartz SJ, Schwartz DA (1997) Genetic mapping of the Lps gene and construction of a physical map of the critical region at mid-chromosome 4. 11th International Mouse Genome Conference

    Google Scholar 

  • Poltorak A, He X, Smirnova I, Liu M-, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg MA, Ricciardi-Castagnoli P, Layton B, Beutler B (1998a) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088

    Article  PubMed  CAS  Google Scholar 

  • Poltorak A, Smirnova I, He XL, Liu MY, Van Huffel C, McNally O, Birdwell D, Alejos E, Silva M, Du X, Thompson P, Chan EKL, Ledesma J, Roe B, Clifton S, Vogel SN, Beutler B (1998b) Genetic and physical mapping of the Lps locus—identification of the toll-4 receptor as a candidate gene in the critical region. Blood Cells Mol Dis 24:340–355

    Article  PubMed  CAS  Google Scholar 

  • Poltorak A, Smirnova I, Clisch R, Beutler B (2000) Limits of a deletion spanning Tlr4 in C57BL/10ScCr mice. J Endotoxin Res 6:51–56

    Article  PubMed  CAS  Google Scholar 

  • Poltorak A, Merlin T, Nielsen PJ, Sandra O, Smirnova I, Schupp I, Boehm T, Galanos C, Freudenberg MA (2001) A point mutation in the il-12rbeta2 gene underlies the il-12 unresponsiveness of lps-defective c57bl/10sccr mice. J Immunol 167:2106–2111

    PubMed  CAS  Google Scholar 

  • Qureshi S, Zhang X, Clermont S, Lariviere L, Skamene E, Gros P, Eydoux P, Malo D (1996) Genetic and physical mapping of the Lps locus. 10th International Mouse Genome Conference

    Google Scholar 

  • Qureshi ST, Larivière L, Leveque G, Clermont S, Moore KJ, Gros P, Malo D (1999a) Endotoxin-tolerant mice have mutations in toll-like receptor 4 (Tlr4) [correction]. J Exp Med 189:1519–1520

    Article  Google Scholar 

  • Qureshi ST, Lariviere L, Leveque G, Clermont S, Moore KJ, Gros P, Malo D (1999b) Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med 189:615–625

    Article  PubMed  CAS  Google Scholar 

  • Reichhart JM, Meister M, Dimarcq JL, Zachary D, Hoffmann D, Ruiz C, Richards G, Hoffmann JA (1992) Insect immunity: developmental and inducible activity of the Drosophila diptericin promoter. EMBO J 11:1469–1477

    PubMed  CAS  Google Scholar 

  • Rinchik EM, Bell JA, Hunsicker PR, Friedman JM, Jackson IJ, Russell LB (1994) Molecular genetics of the brown (b)-locus region of mouse chromosome 4. I. Origin and molecular mapping of radiation- and chemical-induced lethal brown deletions. Genetics 137:845–854

    PubMed  CAS  Google Scholar 

  • Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A (2005) The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci U S A 102:9577–9582

    Article  PubMed  CAS  Google Scholar 

  • Rutschmann S, Jung AC, Hetru C, Reichhart JM, Hoffmann JA, Ferrandon D (2000) The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila. Immunity 12:569–580

    Article  PubMed  CAS  Google Scholar 

  • Rutschmann S, Hoebe K, Zalevsky J, Du X, Mann N, Dahiyat BI, Steed P, Beutler B (2006) PanR1, a dominant negative missense allele of the gene encoding TNF-alpha (Tnf), does not impair lymphoid development. J Immunol 176:7525–7532

    PubMed  CAS  Google Scholar 

  • Schumann RR, Leong SR, Flaggs GW, Gray PW, Wright SD, Mathison JC, Tobias PS, Ulevitch RJ (1990) Structure and function of lipopolysaccharide binding protein. Science 249:1429–1431

    Article  PubMed  CAS  Google Scholar 

  • Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189:1777–1782

    Article  PubMed  CAS  Google Scholar 

  • Skidmore BJ, Chiller JM, Morrison DC, Weigle WO (1975) Immunologic properties of bacterial lipopolysaccharide (LPS): correlation between the mitogenic, adjuvant, and immunogenic activities. J Immunol 114:770–775

    PubMed  CAS  Google Scholar 

  • Stack J, Haga IR, Schroder M, Bartlett NW, Maloney G, Reading PC, Fitzgerald KA, Smith GL, Bowie AG (2005) Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. J Exp Med 201:1007–1018

    Article  PubMed  CAS  Google Scholar 

  • Sultzer BM (1968) Genetic control of leucocyte responses to endotoxin. Nature 219:1253–1254

    Article  PubMed  CAS  Google Scholar 

  • Tabeta K, Georgel P, Janssen E, Du X, Hoebe K, Crozat K, Mudd S, Shamel L, Sovath S, Goode J, Alexopoulou L, Flavell RA, Beutler B (2004) Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci U S A 101:3516–3521

    Article  PubMed  CAS  Google Scholar 

  • Tabeta K, Hoebe K, Janssen EM, Du X, Georgel P, Crozat K, Mudd S, Mann N, Sovath S, Goode J, Shamel L, Herskovits AA, Portnoy DA, Cooke M, Tarantino LM, Wiltshire T, Steinberg BE, Grinstein S, Beutler B (2006) The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat Immunol 7:156–164

    Article  PubMed  CAS  Google Scholar 

  • Taguchi T, Mitcham JL, Dower SK, Sims JE, Testa JR (1996) Chromosomal localization of TIL, a gene encoding a protein related to the Drosophila transmembrane receptor Toll, to human chromosome 4p14. Genomics 32:486–488

    Article  PubMed  CAS  Google Scholar 

  • Takaoka A, Yanai H, Kondo S, Duncan G, Negishi H, Mizutani T, Kano S, Honda K, Ohba Y, Mak TW, Taniguchi T (2005) Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 434:243–249

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11:443–451

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi O, Kawai T, Muhlradt PF, Morr M, Radolf JD, Zychlinsky A, Takeda K, Akira S (2001) Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13:933–940

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, Modlin RL, Akira S (2002) Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 169:10–14

    PubMed  CAS  Google Scholar 

  • Tschopp J, Martinon F, Burns K (2003) NALPs: a novel protein family involved in inflammation. Nat Rev Mol Cell Biol 4:95–104

    Article  PubMed  CAS  Google Scholar 

  • Uematsu S, Sato S, Yamamoto M, Hirotani T, Kato H, Takeshita F, Matsuda M, Coban C, Ishii KJ, Kawai T, Takeuchi O, Akira S (2005) Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR) 7- and TLR9-mediated interferon-alpha induction. J Exp Med 201:915–923

    Article  PubMed  CAS  Google Scholar 

  • Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS (1994) Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264:719–725

    Article  PubMed  CAS  Google Scholar 

  • Vogel SN, Wax JS, Perera PY, Padlan C, Potter M, Mock BA (1994) Construction of a BALB/c congenic mouse, C. J Exp MedC3H-Lpsd, that expresses the Lpsd allele: analysis of chromosome 4 markers surrounding the Lps gene. Infect Immun 62:4454–4459

    PubMed  CAS  Google Scholar 

  • Vogel SN, Johnson D, Perera PY, Medvedev A, Larivière L, Qureshi ST, Malo D (1999) Functional characterization of the effect of the C3H/HeJ defect in mice that lack an Lpsn gene: in vivo evidence for a dominant negative mutation. J Immunol 162:5666–5670

    PubMed  CAS  Google Scholar 

  • Watson J, Riblet R (1975) Genetic control of responses to bacterial lipopolysaccharides in mice. II. A gene that influences a membrane component involved in the activation of bone marrow-derived lymphocytes by lipopolysaccharides. J Immunol 114:1462–1468

    PubMed  CAS  Google Scholar 

  • Watson J, Riblet R, Taylor BA (1977) The response of recombinant inbred strains of mice to bacterial lipopolysaccharides. J Immunol 118:2088–2093

    PubMed  CAS  Google Scholar 

  • Watson J, Kelly K, Largen M, Taylor BA (1978) The genetic mapping of a defective LPS response gene in C3H/HeJ mice. J Immunol 120:422–424

    PubMed  CAS  Google Scholar 

  • Wright SD (1991) Multiple receptors for endotoxin. Curr Opin Immunol 3:83–90

    Article  PubMed  CAS  Google Scholar 

  • Wright SD, Jong MTC (1986) Adhesion-promoting receptors on human macrophages recognize Escherichia coli by binding to lipopolysaccharide. J Exp Med 164:1876–1888

    Article  PubMed  CAS  Google Scholar 

  • Wright SD, Tobias PS, Ulevitch RJ, Ramos RA (1989) Lipopolysaccharide (LPS) binding protein opsonizes LPS-bearing particle for recognition by a novel receptor on macrophages. J Exp Med 170:1231–1241

    Article  PubMed  CAS  Google Scholar 

  • Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249:1431–1433

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Tao X, Shen B, Horng T, Medzhitov R, Manley JL, Tong L (2000) Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 408:111–115

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Sato S, Hemmi H, Sanjo H, Uematsu S, Kaisho T, Hoshino K, Takeuchi O, Kobayashi M, Fujita T, Takeda K, Akira S (2002) Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420:324–329

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, Akira S (2003a) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301:640–643

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K, Kaisho T, Takeuchi O, Takeda K, Akira S (2003b) TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol 4:1144–1150

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama K, Terao T, Osawa T (1978) Membrane receptors of human erythrocytes for bacterial lipopolysaccharide (LPS). Jpn J Exp Med 48:511–517

    PubMed  CAS  Google Scholar 

  • Yokoyama K, Mashimo J, Kasai N, Terao T, Osawa T (1979) Binding of bacterial lipopolysaccharide to histocompatibility-2-complex proteins of mouse lymphocytes. Hoppe Seylers Z Physiol Chem 360:587–595

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Beutler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beutler, B., Moresco, E.M.Y. (2008). The Forward Genetic Dissection of Afferent Innate Immunity. In: Beutler, B. (eds) Immunology, Phenotype First: How Mutations Have Established New Principles and Pathways in Immunology. Current Topics in Microbiology and Immunology, vol 321. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75203-5_1

Download citation

Publish with us

Policies and ethics