Skip to main content

Protein-Protein Interactions in Plant Virus Movement and Pathogenicity

  • Chapter
Molecular Mechanisms of Plant and Microbe Coexistence

Part of the book series: Soil Biology ((SOILBIOL,volume 15))

  • 2565 Accesses

Viruses generally consist of a rather small number of molecular components including a few proteins, sometimes a membranous envelope, and an RNA or DNA genome encompassing a very limited set of coding sequences. For every step in the viral life cycles such as replication of the viral genomes, transcription/translation of viral gene products, intra- and intercellular movement and virus assembly and transmission, viruses make use of the biosynthetic and regulatory capacities of the host cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbink TE, Peart JR, Mos TN, Baulcombe DC, Bol JF, Linthorst HJ (2002) Silencing of a gene encoding a protein component of the oxygen-evolving complex of photosystem II enhances virus replication in plants. Virology 295:307-319.

    PubMed  Google Scholar 

  • Anandalakshmi R, Marathe R, Ge X, Herr JM Jr, Mau C, Mallory A, Pruss G, Bowman L, Vance VB (2000) A calmodulin-related protein that suppresses posttranscriptional gene silencing in plants. Science 290:142-144.

    PubMed  Google Scholar 

  • Ballut L, Drucker M, Pugniere M, Cambon F, Blanc S, Roquet F, Candresse T, Schmid HP, Nicolas P, Le Gall O, Badaoui S (2005) HcPro, a multifunctional protein encoded by a plant RNA virus, targets the 20 S proteasome and affects its enzymic activities. J Gen Virol 86:2595-2603.

    PubMed  Google Scholar 

  • Bayne EH, Rakitina DV, Morozov SY, Baulcombe DC (2005) Cell-to-cell movement of potato potexvirus X is dependent on suppression of RNA silencing. Plant J 44:471-482.

    PubMed  Google Scholar 

  • Beffa R, Meins F Jr (1996) Pathogenesis-related functions of plant beta-1,3-glucanases investi-gated by antisense transformation-a review. Gene 179:97-103.

    PubMed  Google Scholar 

  • Bilgin DD, Liu Y, Schiff M, Dinesh-Kumar SP (2003) P58(IPK), a plant ortholog of double-stranded RNA-dependent protein kinase PKR inhibitor, functions in viral pathogenesis. Dev Cell 4:651-661.

    PubMed  Google Scholar 

  • Boevink P, Oparka KJ (2005) Virus-host interactions during movement processes. Plant Physiol 138:1815-1821.

    PubMed  Google Scholar 

  • Boyko V, Ferralli J, Ashby J, Schellenbaum P, Heinlein M (2000) Function of microtubules in intercellular transport of plant virus RNA. Nat Cell Biol 2:826-832.

    PubMed  Google Scholar 

  • Brigneti G, Voinnet O, Li WX, Ji LH, Ding SW, Baulcombe DC (1998) Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. Embo J 17:6739-6746.

    PubMed  Google Scholar 

  • Brodersen P, Voinnet O (2006) The diversity of RNA silencing pathways in plants. Trends Genet 22:268-280.

    PubMed  Google Scholar 

  • Canto T, Uhrig JF, Swanson M, Wright KM, MacFarlane SA (2006) Translocation of tomato bushy stunt virus P19 protein into the nucleus by ALY proteins compromises its silencing suppressor activity. J Virol 80:9064-9072.

    PubMed  Google Scholar 

  • Carette JE, Verver J, Martens J, van Kampen T, Wellink J, van Kammen A (2002) Characterization of plant proteins that interact with cowpea mosaic virus ‘60 K’ protein in the yeast two-hybrid system. J Gen Virol 83:885-893.

    PubMed  Google Scholar 

  • Carvalho MF, Lazarowitz SG (2004) Interaction of the movement protein NSP and the Arabidopsis acetyltransferase AtNSI is necessary for Cabbage leaf curl geminivirus infection and patho-genicity. J Virol 78:11161-11171.

    PubMed  Google Scholar 

  • Chen MH, Sheng J, Hind G, Handa AK, Citovsky V (2000) Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. Embo J 19:913-920.

    PubMed  Google Scholar 

  • Chen MH, Tian GW, Gafni Y, Citovsky V (2005) Effects of calreticulin on viral cell-to-cell move-ment. Plant Physiol 138:1866-1876.

    PubMed  Google Scholar 

  • Chen YA, Scheller RH (2001) SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol 2:98-106.

    PubMed  Google Scholar 

  • Choi CW, Qu F, Ren T, Ye XH, Morris TJ (2004) RNA silencing-suppressor function of Turnip crinkle virus coat protein cannot be attributed to its interaction with the Arabidopsis protein TIP. J Gen Virol 85:3415-3420.

    PubMed  Google Scholar 

  • Chu M, Desvoyes B, Turina M, Noad R, Scholthof HB (2000) Genetic dissection of tomato bushy stunt virus p19-protein-mediated host-dependent symptom induction and systemic invasion. Virology 266:79-87.

    PubMed  Google Scholar 

  • Citovsky V, McLean BG, Zupan JR, Zambryski P (1993) Phosphorylation of tobacco mosaic virus cell-to-cell movement protein by a developmentally regulated plant cell wall-associated pro-tein kinase. Genes Dev 7:904-910.

    PubMed  Google Scholar 

  • Coppolino MG, Woodside MJ, Demaurex N, Grinstein S, St-Arnaud R, Dedhar S (1997) Calreticulin is essential for integrin-mediated calcium signalling and cell adhesion. Nature 386:843-847.

    PubMed  Google Scholar 

  • Curin M, Ojangu EL, Trutnyeva K, Ilau B, Truve E, Waigmann E (2007) MPB2C, a microtubule-associated plant factor, is required for microtubular accumulation of tobacco mosaic virus movement protein in plants. Plant Physiol 143:801-811.

    PubMed  Google Scholar 

  • Dejong W, Ahlquist P (1992) A hybrid plant Rna virus made by transferring the noncapsid move-ment protein from a rod-shaped to an icosahedral virus is competent for systemic infection. Proc Nat Acad Sci USA 89:6808-6812.

    Google Scholar 

  • Deleris A, Gallego-Bartolome J, Bao J, Kasschau KD, Carrington JC, Voinnet O (2006). Hierarchical action and inhibition of plant dicer-like proteins in antiviral defense. Science 313:68-71.

    PubMed  Google Scholar 

  • Desvoyes B, Faure-Rabasse S, Chen MH, Park JW, Scholthof HB (2002) A novel plant homeodo-main protein interacts in a functionally relevant manner with a virus movement protein. Plant Physiol 129:1521-1532.

    PubMed  Google Scholar 

  • Ding SW, Shi BJ, Li WX, Symons RH (1996) An interspecies hybrid RNA virus is significantly more virulent than either parental virus. Proc Nat Acad Sci USA 93:7470-7474.

    PubMed  Google Scholar 

  • Dong XL, van Wezel R, Stanley J, Hong YG (2003) Functional characterization of the nuclear localization signal for a suppressor of posttranscriptional gene silencing. J Virol 77:7026-7033.

    PubMed  Google Scholar 

  • Dorokhov YL, Makinen K, Frolova OY, Merits A, Saarinen J, Kalkkinen N, Atabekov JG, Saarma M (1999) A novel function for a ubiquitous plant enzyme pectin methylesterase: the host-cell receptor for the tobacco mosaic virus movement protein. FEBS Lett 461:223-228.

    PubMed  Google Scholar 

  • D’Souza SE, Ginsberg MH, Plow EF (1991) Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. Trends Biochem Sci 16:246-250.

    PubMed  Google Scholar 

  • Dunoyer P, Thomas C, Harrison S, Revers F, Maule A (2004) A cysteine-rich plant protein poten-tiates Potyvirus movement through an interaction with the virus genome-linked protein VPg. J Virol 78:2301-2309.

    PubMed  Google Scholar 

  • Epel BL, Padgett HS, Heinlein M, Beachy RN (1996) Plant virus movement protein dynamics probed with a GFP-protein fusion. Gene 173:75-79.

    PubMed  Google Scholar 

  • Fontes EP, Santos AA, Luz DF, Waclawovsky AJ, Chory J (2004) The geminivirus nuclear shut-tle protein is a virulence factor that suppresses transmembrane receptor kinase activity. Genes Dev 18:2545-2556.

    PubMed  Google Scholar 

  • Fridborg I, Grainger J, Page A, Coleman M, Findlay K, Angell S (2003) TIP, a novel host factor linking callose degradation with the cell-to-cell movement of Potato virus X. Mol Plant Microbe Interact 16:132-140.

    PubMed  Google Scholar 

  • Gallagher KL, Benfey PN (2005) Not just another hole in the wall: understanding intercellular protein trafficking. Genes Dev 19:189-195.

    PubMed  Google Scholar 

  • Guo D, Spetz C, Saarma M, Valkonen JP (2003) Two potato proteins, including a novel RING finger protein (HIP1), interact with the potyviral multifunctional protein HCpro. Mol Plant Microbe Interact 16:405-410.

    PubMed  Google Scholar 

  • Guo HS, Ding SW (2002) A viral protein inhibits the long range signaling activity of the gene silencing signal. Embo J 21:398-407.

    PubMed  Google Scholar 

  • Hackbusch J, Richter K, Muller J, Salamini F, Uhrig JF (2005) A central role of Arabidopsis thal-iana ovate family proteins in networking and subcellular localization of 3-aa loop extension homeodomain proteins. Proc Natl Acad Sci USA 102:4908-4912.

    PubMed  Google Scholar 

  • Ham BK, Lee TH, You JS, Nam YW, Kim JK, Paek KH (1999) Isolation of a putative tobacco host factor interacting with cucumber mosaic virus-encoded 2b protein by yeast two-hybrid screening. Mol Cells 9:548-555.

    PubMed  Google Scholar 

  • Hao L, Wang H, Sunter G, Bisaro DM (2003) Geminivirus AL2 and L2 proteins interact with and inactivate SNF1 kinase. Plant Cell 15:1034-1048.

    PubMed  Google Scholar 

  • Haupt S, Cowan GH, Ziegler A, Roberts AG, Oparka KJ, Torrance L (2005) Two plant-viral move-ment proteins traffic in the endocytic recycling pathway. Plant Cell 17:164-181.

    PubMed  Google Scholar 

  • Heinlein M, Epel BL, Padgett HS, Beachy RN (1995) Interaction of tobamovirus movement pro-teins with the plant cytoskeleton. Science 270:1983-1985.

    PubMed  Google Scholar 

  • Heinlein M, Padgett HS, Gens JS, Pickard BG, Casper SJ, Epel BL, Beachy RN (1998) Changing patterns of localization of the tobacco mosaic virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection. Plant Cell 10:1107-1120.

    PubMed  Google Scholar 

  • Hirashima K, Watanabe Y (2001) Tobamovirus replicase coding region is involved in cell-to-cell movement. J Virol 75:8831-8836.

    PubMed  Google Scholar 

  • Huang Z, Zhang L (1999) Association of the movement protein of alfalfa mosaic virus with the endoplasmic reticulum and its trafficking in epidermal cells of onion bulb scales. Mol Plant Microbe Interact 12:680-690.

    Google Scholar 

  • Huang Z, Andrianov VM, Han Y, Howell SH (2001) Identification of arabidopsis proteins that interact with the cauliflower mosaic virus (CaMV) movement protein. Plant Mol Biol.47:663-675.

    PubMed  Google Scholar 

  • Imlau A, Truernit E, Sauer N (1999) Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissues. Plant Cell 11:309-322.

    PubMed  Google Scholar 

  • Jimenez I, Lopez L, Alamillo JM, Valli A, Garcia JA (2006) Identification of a plum pox virus CI-interacting protein from chloroplast that has a negative effect in virus infection. Mol Plant Microbe Interact 19:350-358.

    PubMed  Google Scholar 

  • Kaplan IB, Shintaku MH, Zhang L, Marsh LE, Palukaitis P (1995) Complementation of virus movement in transgenic tobacco expressing cucumber mosaic-virus 3a gene. Virology 209:188-199.

    PubMed  Google Scholar 

  • Kasschau KD, Carrington JC (2001) Long-distance movement and replication maintenance functions correlate with silencing suppression activity of potyviral HC-Pro. Virology 285:71-81.

    PubMed  Google Scholar 

  • Kim MJ, Ham BK, Kim HR, Lee IJ, Kim YJ, Ryu KH, Park YI, Paek KH (2005) In vitro and in planta interaction evidence between Nicotiana tabacum thaumatin-like protein 1 (TLP1) and Cucumber mosaic virus proteins. Plant Mol Biol 59:981-994.

    PubMed  Google Scholar 

  • Kragler F, Curin M, Trutnyeva K, Gansch A, Waigmann E (2003) MPB2C, a microtubule-associated plant protein binds to and interferes with cell-to-cell transport of tobacco mosaic virus movement protein. Plant Physiol 132:1870-1883.

    PubMed  Google Scholar 

  • Kubota K, Tsuda S, Tamai A, Meshi T (2003) Tomato mosaic virus replication protein suppresses virus-targeted posttranscriptional gene silencing. J Virol 77:11016-11026.

    PubMed  Google Scholar 

  • Lakatos L, Szittya G, Silhavy D, Burgyan J (2004) Molecular mechanism of RNA silencing sup-pression mediated by p19 protein of tombusviruses. Embo J 23:876-884.

    PubMed  Google Scholar 

  • Lakatos L, Csorba T, Pantaleo V, Chapman EJ, Carrington JC, Liu YP, Dolja VV, Calvino LF, Lopez-Moya JJ, Burgyan J (2006) Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. Embo J.

    Google Scholar 

  • Laporte C, Vetter G, Loudes AM, Robinson DG, Hillmer S, Stussi-Garaud C, Ritzenthaler C (2003) Involvement of the secretory pathway and the cytoskeleton in intracellular targeting and tubule assembly of Grapevine fanleaf virus movement protein in tobacco BY-2 cells. Plant Cell 15:2058-2075.

    PubMed  Google Scholar 

  • Lee JY, Taoka K, Yoo BC, Ben-Nissan G, Kim DJ, Lucas WJ (2005) Plasmodesmal-associated protein kinase in tobacco and Arabidopsis recognizes a subset of non-cell-autonomous proteins. Plant Cell 17:2817-2831.

    PubMed  Google Scholar 

  • Li Y, Wu MY, Song HH, Hu X, Qiu BS (2005) Identification of a tobacco protein interacting with tomato mosaic virus coat protein and facilitating long-distance movement of virus. Arch Virol 150:1993-2008.

    PubMed  Google Scholar 

  • Lin B, Heaton LA (2001) An Arabidopsis thaliana protein interacts with a movement protein of Turnip crinkle virus in yeast cells and in vitro. J Gen Virol 82:1245-1251.

    PubMed  Google Scholar 

  • Liu H, Reavy B, Swanson M, MacFarlane SA (2002) Functional replacement of the Tobacco rattle virus cysteine-rich protein by pathogenicity proteins from unrelated plant viruses. Virology 298:232-239.

    PubMed  Google Scholar 

  • Liu JZ, Blancaflor EB, Nelson RS (2005) The tobacco mosaic virus 126-kilodalton protein, a constituent of the virus replication complex, alone or within the complex aligns with and traffics along microfilaments. Plant Physiol 138:1853-1865.

    PubMed  Google Scholar 

  • Lough TJ, Lucas WJ (2006) Integrative plant biology: tole of phloem long-distance macromolecular trafficking. Annu Rev Plant Biol 57:203-232.

    PubMed  Google Scholar 

  • Lucas WJ (2006) Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. Virology 344:169-184.

    PubMed  Google Scholar 

  • Lucas WJ, Lee JY (2004) Plasmodesmata as a supracellular control network in plants. Nat Rev Mol Cell Biol 5:712-726.

    PubMed  Google Scholar 

  • Lucas WJ, Bouche-Pillon S, Jackson DP, Nguyen L, Baker L, Ding B, Hake S (1995) Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 270:1980-1983.

    PubMed  Google Scholar 

  • Maia IG, Haenni AL, Bernardi F (1996) Potyviral HC-Pro: a multifunctional protein. J Gen Virol 77:1335-1341.

    PubMed  Google Scholar 

  • Malyshenko SI, Kondakova OA, Taliansky ME, Atabekov JG (1989) Plant-virus transport function - complementation by helper viruses is non-specific. J Gen Virol 70:2751-2757.

    Google Scholar 

  • Mariano AC, Andrade MO, Santos AA, Carolino SM, Oliveira ML, Baracat-Pereira MC, Brommonshenkel SH, Fontes EP (2004) Identification of a novel receptor-like protein kinase that interacts with a geminivirus nuclear shuttle protein. Virology 318:24-31.

    PubMed  Google Scholar 

  • Mas P, Beachy RN (2000) Role of microtubules in the intracellular distribution of tobacco mosaic virus movement protein. Proc Natl Acad Sci USA 97:12345-12349.

    PubMed  Google Scholar 

  • Matsushita Y, Deguchi M, Youda M, Nishiguchi M, Nyunoya H (2001) The tomato mosaic tobamovirus movement protein interacts with a putative transcriptional coactivator KELP. Mol Cells 12:57-66.

    PubMed  Google Scholar 

  • Matsushita Y, Miyakawa O, Deguchi M, Nishiguchi M, Nyunoya H (2002) Cloning of a tobacco cDNA coding for a putative transcriptional coactivator MBF1 that interacts with the tomato mosaic virus movement protein. J Exp Bot 53:1531-1532.

    PubMed  Google Scholar 

  • McGarry RC, Barron YD, Carvalho MF, Hill JE, Gold D, Cheung E, Kraus WL, Lazarowitz SG (2003) A novel Arabidopsis acetyltransferase interacts with the geminivirus movement protein NSP. Plant Cell 15:1605-1618.

    PubMed  Google Scholar 

  • McLean BG, Zupan J, Zambryski PC (1995) Tobacco mosaic virus movement protein associates with the cytoskeleton in tobacco cells. Plant Cell 7:2101-2114.

    PubMed  Google Scholar 

  • Merai Z, Kerenyi Z, Kertesz S, Magna M, Lakatos L, Silhavy D (2006) Double-stranded RNA binding may be a general plant RNA viral strategy to suppress RNA silencing. J Virol 80:5747-5756.

    PubMed  Google Scholar 

  • Molnar A, Csorba T, Lakatos U, Varallyay E, Lacomme C, Burgyan J (2005) Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. J Virol 79:7812-7818.

    PubMed  Google Scholar 

  • Murchison EP, Hannon GJ (2004) miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr Opin Cell Biol 16:223-229.

    PubMed  Google Scholar 

  • Padgett HS, Epel BL, Kahn TW, Heinlein M, Watanabe Y, Beachy RN (1996) Distribution of tobamovirus movement protein in infected cells and implications for cell-to-cell spread of infection. Plant J 10:1079-1088.

    PubMed  Google Scholar 

  • Padmanabhan MS, Goregaoker SP, Golem S, Shiferaw H, Culver JN (2005) Interaction of the tobacco mosaic virus replicase protein with the Aux/IAA protein PAP1/IAA26 is associated with disease development. J Virol 79:2549-2558.

    PubMed  Google Scholar 

  • Palukaitis P, MacFarlane SA (2006) Viral counter-defense molecules. Springer.

    Google Scholar 

  • Park JW, Faure-Rabasse S, Robinson MA, Desvoyes B, Scholthof HB (2004) The multifunctional plant viral suppressor of gene silencing P19 interacts with itself and an RNA binding host protein. Virology 323:49-58.

    PubMed  Google Scholar 

  • Pazhouhandeh M, Dieterle M, Marrocco K, Lechner E, Berry B, Brault V, Hemmer O, Kretsch T, Richards KE, Genschik P, Ziegler-Graff V (2006) F-box-like domain in the polerovirus protein P0 is required for silencing suppressor function. Proc Natl Acad Sci USA 103:1994-1999.

    PubMed  Google Scholar 

  • Peremyslov VV, Hagiwara Y, Dolja VV (1999) HSP70 homolog functions in cell-to-cell movement of a plant virus. Proc Natl Acad Sci USA 96:14771-14776.

    PubMed  Google Scholar 

  • Peremyslov VV, Pan YW, Dolja VV (2004) Movement protein of a closterovirus is a type III integral transmembrane protein localized to the endoplasmic reticulum. J Virol 78:3704-3709.

    PubMed  Google Scholar 

  • Pfeffer S, Dunoyer P, Heim F, Richards KE, Jonard G, Ziegler-Graff V (2002) P0 of beet western yellows virus is a suppressor of posttranscriptional gene silencing. J Virol 76:6815-6824.

    PubMed  Google Scholar 

  • Prokhnevsky AI, Peremyslov VV, Dolja VV (2005) Actin cytoskeleton is involved in targeting of a viral Hsp70 homolog to the cell periphery. J Virol 79:14421-14428.

    PubMed  Google Scholar 

  • Qu F, Ren T, Morris TJ (2003) The coat protein of turnip crinkle virus suppresses posttranscrip-tional gene silencing at an early initiation step. J Virol 77:511-522.

    PubMed  Google Scholar 

  • Ratcliff F, Harrison BD, Baulcombe DC (1997) A similarity between viral defense and gene silencing in plants. Science 276:1558-1560.

    PubMed  Google Scholar 

  • Reichel C, Mas P, Beachy RN (1999) The role of the ER and cytoskeleton in plant viral trafficking. Trends Plant Sci 4:458-462.

    PubMed  Google Scholar 

  • Ren T, Qu F, Morris TJ (2000) HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus. Plant Cell 12:1917-1926.

    PubMed  Google Scholar 

  • Roberts AG, Oparka KJ (2003) Plasmodesmata and the control of symplastic transport. Plant Cell Environ 26:103-124.

    Google Scholar 

  • Roth BM, Pruss GJ, Vance VB (2004) Plant viral suppressors of RNA silencing. Virus Res 102:97-108.

    PubMed  Google Scholar 

  • Ryabov EV, Robinson DJ, Taliansky ME (1999) A plant virus-encoded protein facilitates long-distance movement of heterologous viral RNA. Proc Nat Acad Sci USAmerica 96:1212-1217.

    Google Scholar 

  • Ryabov EV, Fraser G, Mayo MA, Barker H, Taliansky M (2001) Umbravirus gene expression helps Potato leafroll virus to invade mesophyll tissues and to be transmitted mechanically between plants. Virology 286:363-372.

    PubMed  Google Scholar 

  • Sadowy E, Maasen A, Juszczuk M, David C, Zagorski-Ostoja W, Gronenborn B, Hulanicka MD (2001) The ORFO product of Potato leafroll virus is indispensable for virus accumulation. J Gen Virol 82:1529-1532.

    PubMed  Google Scholar 

  • Sagi G, Katz A, Guenoune-Gelbart D, Epel BL (2005) Class 1 reversibly glycosylated polypeptides are plasmodesmal-associated proteins delivered to plasmodesmata via the golgi apparatus. Plant Cell 17:1788-1800.

    PubMed  Google Scholar 

  • Scholthof HB, Scholthof KBG, Jackson AO (1995a) Identification of tomato bushy stunt virus host-specific symptom determinants by expression of individual genes from a potato-virus-X vector. Plant Cell 7:1157-1172.

    PubMed  Google Scholar 

  • Scholthof HB, Scholthof KBG, Kikkert M, Jackson AO (1995b) Tomato bushy stunt virus spread is regulated by 2 nested genes that function in cell-to-cell movement and host-dependent sys-temic invasion. Virology 213:425-438.

    PubMed  Google Scholar 

  • Soards AJ, Murphy AM, Palukaltis P, Carr JP (2002) Virulence and differential local and systemic spread of Cucumber mosaic virus in tobacco are affected by the CMV 2b protein. Mol Plant-Microbe Interact 15:647-653.

    PubMed  Google Scholar 

  • Soellick T, Uhrig JF, Bucher GL, Kellmann JW, Schreier PH (2000) The movement protein NSm of tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. Proc Natl Acad Sci USA 97:2373-2378.

    PubMed  Google Scholar 

  • Solovyev AG, Stroganova TA, Zamyatnin AA Jr, Fedorkin ON, Schiemann J, Morozov SY (2000) Subcellular sorting of small membrane-associated triple gene block proteins: TGBp3-assisted targeting of TGBp2. Virology 269:113-127.

    PubMed  Google Scholar 

  • Sunter G, Sunter JL, Bisaro DM (2001) Plants expressing tomato golden mosaic virus AL2 or beet curly top virus L2 transgenes show enhanced susceptibility to infection by DNA and RNA viruses. Virology 285:59-70.

    PubMed  Google Scholar 

  • Turina M, Omarov R, Murphy JF, Bazaldua-Hernandez C, Desvoyes B, Scholthof HB (2003) A newly identified role for Tomato bushy stunt virus P19 in short distance spread. Mol Plant Pathol 4:67-72.

    Google Scholar 

  • Uhrig JF, Canto T, Marshall D, MacFarlane SA (2004) Relocalization of nuclear ALY proteins to the cytoplasm by the tomato bushy stunt virus P19 pathogenicity protein. Plant Physiol 135:2411-2423.

    PubMed  Google Scholar 

  • Vargason JM, Szittya G, Burgyan J, Hall TMT (2003) Size selective recognition of siRNA by an RNA silencing suppressor. Cell 115:799-811.

    PubMed  Google Scholar 

  • Voinnet O (2005a) Induction and suppression of RNA silencing: Insights from viral infections. Nature Rev Genet 6:206-U1.

    PubMed  Google Scholar 

  • Voinnet O (2005b) Non-cell autonomous RNA silencing. FEBS Lett 579:5858-5871.

    PubMed  Google Scholar 

  • Voinnet O, Pinto YM, Baulcombe DC (1999) Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Nat Acad Sci USA 96:14147-14152.

    PubMed  Google Scholar 

  • von Bargen S, Salchert K, Paape M, Piechulla B, Kellmann JW (2001) Interactions between the tomato spotted wilt virus movement protein and plant proteins showing homologies to myosin, kinesin and DnaJ-like chaperones. Plant Physiol Biochem 39:1083-1093.

    Google Scholar 

  • Wang H, Hao L, Shung CY, Sunter G, Bisaro DM (2003) Adenosine kinase is inactivated by geminivirus AL2 and L2 proteins. Plant Cell 15:3020-3032.

    PubMed  Google Scholar 

  • Wang Y, Tzfira T, Gaba V, Citovsky V, Palukaitis P, Gal-On A (2004a) Functional analysis of the Cucumber mosaic virus 2b protein: pathogenicity and nuclear localization. J Gen Virol 85:3135-3147.

    PubMed  Google Scholar 

  • Wang YZ, Tzfira T, Gaba V, Citovsky V, Palukaitis P, Gal-On A (2004b) Functional analysis of the Cucumber mosaic virus 2b protein: pathogenicity and nuclear localization. J Gen Virol 85:3135-3147.

    PubMed  Google Scholar 

  • Wick S (2000) Plant microtubules meet their MAPs and mimics. Nat Cell Biol 2:E204-206.

    PubMed  Google Scholar 

  • Xoconostle-Cazares B, Xiang Y, Ruiz-Medrano R, Wang HL, Monzer J, Yoo BC, McFarland KC, Franceschi VR, Lucas WJ (1999) Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem. Science 283:94-98.

    PubMed  Google Scholar 

  • Ye KQ, Patel DJ (2005) RNA silencing suppressor p21 of beet yellows virus forms an RNA bind-ing octameric ring structure. Structure 13:1375-1384.

    PubMed  Google Scholar 

  • Yelina NE, Savenkov EI, Solovyev AG, Morozov SY, Valkonen JPT (2002) Long-distance move-ment, virulence, and RNA silencing suppression controlled by a single protein in hordei- and potyviruses: Complementary functions between virus families. J Virol 76:12981-12991.

    PubMed  Google Scholar 

  • Yoshioka K, Matsushita Y, Kasahara M, Konagaya K, Nyunoya H (2004) Interaction of tomato mosaic virus movement protein with tobacco RIO kinase. Mol Cells 17:223-229.

    PubMed  Google Scholar 

  • Young JC, Barral JM, Ulrich Hartl F (2003) More than folding: localized functions of cytosolic chaperones. Trends Biochem Sci 28:541-547.

    PubMed  Google Scholar 

  • Yu B, Chapman EJ, Yang Z, Carrington JC, Chen X (2006) Transgenically expressed viral RNA silencing suppressors interfere with microRNA methylation in Arabidopsis. FEBS Lett 580:3117-3120.

    PubMed  Google Scholar 

  • Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107-117.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim F. Uhrig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Uhrig, J.F., MacFarlane, S.A. (2008). Protein-Protein Interactions in Plant Virus Movement and Pathogenicity. In: Nautiyal, C.S., Dion, P. (eds) Molecular Mechanisms of Plant and Microbe Coexistence. Soil Biology, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75575-3_13

Download citation

Publish with us

Policies and ethics