Skip to main content

Sparse Matrix Algebra for Quantum Modeling of Large Systems

  • Conference paper
Applied Parallel Computing. State of the Art in Scientific Computing (PARA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4699))

Included in the following conference series:

Abstract

Matrices appearing in Hartree–Fock or density functional theory coming from discretization with help of atom–centered local basis sets become sparse when the separation between atoms exceeds some system–dependent threshold value. Efficient implementation of sparse matrix algebra is therefore essential in large–scale quantum calculations. We describe a unique combination of algorithms and data representation that provides high performance and strict error control in blocked sparse matrix algebra. This has applications to matrix–matrix multiplication, the Trace–Correcting Purification algorithm and the entire self–consistent field calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kittel, C.: 8. In: Introduction to Solid State Physics, 7th edn., John Wiley&Sons Inc., Chichester (1996)

    Google Scholar 

  2. Schrödinger, E.: Die gegenwartige situation in der quantenmechanik. Naturwissenschaften 23, 807 (1935)

    Article  Google Scholar 

  3. Schrödinger, E.: The present situation in quantum mechanics: a translation of Schrödinger’s ”cat paradox”. Proc. Am. Phil. Soc. 124, 323 (1980)

    Google Scholar 

  4. See, e.g., Cramer, C.J.: Essentials of computational chemistry, 2nd edn. Wiley, Chichester (2004)

    Google Scholar 

  5. Goedecker, S.: Linear scaling electronic structure methods. Rev. Mod. Phys. 71, 1085 (1999)

    Article  Google Scholar 

  6. Challacombe, M.: A simplified density matrix minimization for linear scaling self–consistent field theory. J. Chem. Phys. 110, 2332 (1999)

    Article  Google Scholar 

  7. Shao, Y., Saravanan, C., Head–Gordon, M., White, C.A.: Curvy steps for density matrix–based energy minimization: Application to large–scale self–consistent–field calculations. J. Chem. Phys. 118, 6144 (2003)

    Article  Google Scholar 

  8. Palser, A.H.R., Manolopoulos, D.E.: Canonical purification of the density matrix in electronic structure theory. Phys. Rev. B 58, 12704 (1998)

    Article  Google Scholar 

  9. Niklasson, A.M.N.: Expansion algorithm for the density matrix. Phys. Rev. B 66, 155115 (2002)

    Article  Google Scholar 

  10. Niklasson, A.M.N., Tymczak, C.J., Challacombe, M.: Trace resetting density matrix purification in O(N) self–consistent–field theory. J. Chem. Phys. 118, 8611 (2003)

    Article  Google Scholar 

  11. Mazziotti, D.A.: Towards idempotent reduced density matrices via particle–hole duality: McWeeny’s purification and beyond. Phys. Rev. E 68, 66701 (2003)

    Article  Google Scholar 

  12. Holas, A.: Transforms for idempotency purification of density matrices in linear–scaling electronic–structure calculations. Chem. Phys. Lett. 340, 552 (2001)

    Article  Google Scholar 

  13. Millam, J.M., Scuseria, G.E.: Linear scaling conjugate gradient density matrix search as an alternative to diagonalization for first principles electronic structure calculations. J. Chem. Phys. 106, 5569 (1997)

    Article  Google Scholar 

  14. Demmel, J.W.: Applied Numerical Linear Algebra, SIAM, Philadelphia (1997)

    Google Scholar 

  15. Rubensson, E.H., Sałek, P.: Systematic sparse matrix error control for linear scaling electronic structure calculations. J. Comp. Chem. 26, 1628–1637 (2005)

    Article  Google Scholar 

  16. Maslen, P.E., Ochsenfeld, C., White, C.A., Lee, M.S., Head–Gordon, M.: Locality and Sparsity of Ab Initio One–Particle Density Matrices and Localized Orbitals. J. Phys. Chem. A 102, 2215 (1998)

    Article  Google Scholar 

  17. Gustavsson, F.G.: Two Fast Algorithms for Sparse Matrices: Multiplication and Permuted Transposition. ACM Trans. Math. Softw. 4, 250 (1978)

    Article  Google Scholar 

  18. Saravanan, C., Shao, Y., Baer, R., Ross, P.N., Head–Gordon, M.: Sparse matrix multiplications for linear scaling electronic structure calculations in an atom–centered basis set using multiatom blocks. J. Comp. Chem. 24, 618 (2003)

    Article  Google Scholar 

  19. Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S., Sorensen, D.: LAPACK Users’ Guide, release 2.0 SIAM, Philadelphia (1994)

    Google Scholar 

  20. Whaley, R.C., Petitet, A.: Minimizing development and maintenance costs in supporting persistently optimized BLAS. Softw. Pract. Exper. 35, 101 (2005)

    Article  Google Scholar 

  21. Li, X.-P., Nunes, R.W., Vanderbilt, D.: Density–matrix electronic–structure method with linear system–size scaling. Phys. Rev. B 47, 10891 (1993)

    Article  Google Scholar 

  22. Challacombe, M.: A general parallel sparse–blocked matrix multiply for linear scaling SCF theory. Comp. Phys. Comm. 128, 93 (2000)

    Article  MATH  Google Scholar 

  23. Elmroth, E., Gustavson, F., Jonsson, I., Kågström, B.: Recursive blocked algorithms and hybrid data structures for dense matrix library software. SIAM Rev. 46, 3 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bo Kågström Erik Elmroth Jack Dongarra Jerzy Waśniewski

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rubensson, E.H., Rudberg, E., Sałek, P. (2007). Sparse Matrix Algebra for Quantum Modeling of Large Systems. In: Kågström, B., Elmroth, E., Dongarra, J., Waśniewski, J. (eds) Applied Parallel Computing. State of the Art in Scientific Computing. PARA 2006. Lecture Notes in Computer Science, vol 4699. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75755-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75755-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75754-2

  • Online ISBN: 978-3-540-75755-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics