Skip to main content

Term Structure Modeling in Continuous Time

  • Chapter
Bond Portfolio Optimization

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 605))

  • 1313 Accesses

Abstract

The main inputs of portfolio selection models are the expected values and covariances of the assets under consideration. In equity portfolio selection, the expected values and covariances are oftentimes estimated by analyzing the historical time series of the stocks. Because of bond characteristics and properties of bond portfolio selection models that will be discussed in greater detail in Chapter 4, such an approach is generally ruled out for fixed income instruments. In order to determine the bond portfolio selection parameters consistently, a theoretical model for the evolution of bond prices over time is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See Wilhelm (1992), p. 213.

    Google Scholar 

  2. See Wilhelm (1992), p. 209.

    Google Scholar 

  3. See Wilhelm (1992), p. 209.

    Google Scholar 

  4. Choudhry (2004), p. 178.

    Google Scholar 

  5. The model dates back to the seminal analysis of Macaulay (1938).

    Google Scholar 

  6. See Cairns (2004), p. 18.

    Google Scholar 

  7. See Baz/Chacko (2004), p. 108.

    Google Scholar 

  8. Hull/ White (1996), pp. 261–262.

    Google Scholar 

  9. See Hull/White (1996), p. 228.

    Google Scholar 

  10. See Hull/White (1996), p. 229.

    Google Scholar 

  11. See Hull/White (1996), p. 229.

    Google Scholar 

  12. A stochastic process has the Markov property if the conditional distribution of its future values depends only on the current value and not on the past. See Cvitanic/Zapatero (2004), p. 65.

    Google Scholar 

  13. See Hull/White (1996), p. 229.

    Google Scholar 

  14. Hull/ White (1996), p. 229.

    Google Scholar 

  15. It has been common to assume that only one factor drives the term structure. According to Martellini/Priaulet/Priaulet (2003), p. 388, there is a general consensus among researchers that this factor should be the short rate.

    Google Scholar 

  16. See Table 3.1 on page 70 of Martellini/Priaulet/Priaulet (2003) for empirical results of interest-rate co-movements.

    Google Scholar 

  17. See Martellini/Priaulet/Priaulet (2003), p. 388.

    Google Scholar 

  18. See Martellini/Priaulet/Priaulet (2003), p. 388.

    Google Scholar 

  19. Svoboda (2004), p. vii.

    Google Scholar 

  20. See Hull/White (1996), p. 229.

    Google Scholar 

  21. See Hull/White (1996), p. 229.

    Google Scholar 

  22. See Björk (1998), p. 242.

    Google Scholar 

  23. See Branger/Schlag (2004), p. 160.

    Google Scholar 

  24. See Cvitanic/Zapatero (2004), p. 88.

    Google Scholar 

  25. Svoboda (2004), p. 124.

    Google Scholar 

  26. See Branger/Schlag (2004), p. 126.

    Google Scholar 

  27. Heath/ Jarrow/ Morton (1992), p. 80.

    Google Scholar 

  28. See Heath/Jarrow/Morton (1992), p. 80. For notational convenience this dependence is not indicated in Equation (3.2).

    Google Scholar 

  29. See Branger/Schlag (2004), p. 126.

    Google Scholar 

  30. See Heath/Jarrow/Morton (1992), p. 79.

    Google Scholar 

  31. See Heath/Jarrow/Morton (1992), p. 99.

    Google Scholar 

  32. For a brief exposition of the two approaches see Cairns (2004), p. 55 and Cairns (2004), p. 60.

    Google Scholar 

  33. For a book-length treatment of asset pricing that contains a chapter on the stochatic discount factor methodology see Cochrane (2005). Wilhelm (2005) derives Gaussian interest rate models from the specification of the stochastic discount factor. The Ho-Lee interest rate model was derived by stochastic discounting already in Wilhelm (1999). For stochastic discounting in a discrete time setting see Wilhelm (1996).

    Google Scholar 

  34. If the market is free of arbitrage and complete, there exists a unique stochastic discount factor, see Harrison/Kreps (1979) and Harrison/Pliska (1981).

    Google Scholar 

  35. Based on the one-factor formulation in Baz/Chacko (2004), p. 51.

    Google Scholar 

  36. The market price of interest rate risk gives the expected return over the riskless rate per unit of volatility. It must be equal for all traded assets, see Branger/Schlag (2004), p. 115.

    Google Scholar 

  37. See Jin/Glasserman (2001), p. 195.

    Google Scholar 

  38. This follows from the definition of the stochastic discount factor, see Duffie (1996), p. 103. A stochastic process X is a martingale if Et(Xs) = Xt, see Duffie (1996), p. 22.

    Google Scholar 

  39. See Heath/Jarrow/Morton (1992), p. 84.

    Google Scholar 

  40. See Branger/Schlag (2004), p. 129.

    Google Scholar 

  41. Vasicek (1977).

    Google Scholar 

  42. Vasicek (1977), p. 185.

    Google Scholar 

  43. Vasicek (1977), p. 185.

    Google Scholar 

  44. Vasicek (1977), p. 185.

    Google Scholar 

  45. See Rinne (1997), p. 365.

    Google Scholar 

  46. Svoboda (2004), p. 10.

    Google Scholar 

  47. Svoboda (2004), p. 10.

    Google Scholar 

  48. Vasicek (1977), p. 186.

    Google Scholar 

  49. Svoboda (2004), p. 9.

    Google Scholar 

  50. This can be derived as well from Equation (3.20). See also Vasicek (1977), p. 185.

    Google Scholar 

  51. See Tuckman (2002), p. 239.

    Google Scholar 

  52. Munk (2004b), p. 157.

    Google Scholar 

  53. See Martellini/Priaulet/Priaulet (2003), p. 390.

    Google Scholar 

  54. Munk (2004b), p. 159.

    Google Scholar 

  55. It is \( N\left( { - \frac{{E_t [R(T)]}} {{\sqrt {\operatorname{var} _t (rT))} }}} \right) \) , where N(x) is the standard-normal cumulative probability function, see Munk (2004b), p. 163.

    Google Scholar 

  56. Chan et al. (1992), p. 1218.

    Google Scholar 

  57. See Vasicek (1977), p. 186.

    Google Scholar 

  58. See Vasicek (1977), p. 168.

    Google Scholar 

  59. Vasicek (1977), pp. 186–187.

    Google Scholar 

  60. See Holden (2005), p. 55.

    Google Scholar 

  61. See Golub/Tilman (2000), p. 89.

    Google Scholar 

  62. This formulation is equivalent to the original one with correlated Brownian motions. See e.g. Brigo/Mercurio (2001), p. 134

    Google Scholar 

  63. For a general integration by parts formula see Oksendal (1992), p. 46.

    Google Scholar 

  64. Brigo/ Mercurio (2001), p. 150.

    Google Scholar 

  65. The sum of the two stochastic integrals is normally distributed. If x is normally distributed, then \( E[e^x ] = e^E [x] + \frac{1} {2}\operatorname{var} (x) \) , see Rinne (1997), p. 365. In this case, E[x] = 0.

    Google Scholar 

  66. See Litterman/Scheinkman (1991), p. 58.

    Google Scholar 

  67. See Golub/Tilman (2000), p. 89.

    Google Scholar 

  68. See Hull/White (1996), p. 334.

    Google Scholar 

  69. See Hull/White (1996), p. 369.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Term Structure Modeling in Continuous Time. In: Bond Portfolio Optimization. Lecture Notes in Economics and Mathematical Systems, vol 605. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76593-6_3

Download citation

Publish with us

Policies and ethics