Skip to main content

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 370))

Summary

In this paper a visual servoing architecture based on a parallel robot for the tracking of faster moving objects with unknown trajectories is proposed. The control strategy is based on the prediction of the future position and velocity of the moving object. The synthesis of the predictive control law is based on the compensation of the delay introduced by the vision system. Demonstrating by experiments, the high-speed parallel robot system has good performance in the implementation of visual control strategies with high temporary requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clavel, R.: DELTA: a fast robot with parallel geometry. In: 18th International Symposium on Industrial Robot, Sidney Australia, pp. 91–100 (1988)

    Google Scholar 

  2. Angel, L., Sebastian, J.M., Saltaren, R., Aracil, R., SanPedro, J.: RoboTenis: Optimal design of a Parallel Robot with High Performance. In: IROS 2005. IEEE/RSJ International Conference on Intelligent Robots and Systems, Canada, pp. 2134–2139 (2005)

    Google Scholar 

  3. Angel, L., Sebastian, J.M., Saltaren, R., Aracil, J., Gutiérrez, R.: RoboTenis: Design, Dynamic Modeling and Preliminary Control. In: AIM 2005. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, California, pp. 747–752 (2005)

    Google Scholar 

  4. Angel, L., Sebastian, J.M., Saltaren, R., Aracil, R.: RoboTenis System. Part II: Dynamics and Control. In: CDC-ECC 2005. 44th IEEE Conference on Decision and Control and European Control Conference, Sevilla, pp. 2030–2034 (2005)

    Google Scholar 

  5. Anderson, R.: Dynamic Sensing in ping-pong playing robot. IEEE Trans. on Robotics and Automation 5(6), 728–739 (1989)

    Article  Google Scholar 

  6. Anderson, R: Understanding and applying a robot ping-pong player’s expert controller. In: ICRA 1989. IEEE International Conference on Robotics and Automation, vol. 3, pp. 1284–1289 (1989)

    Google Scholar 

  7. Burridge, R., Rizzi, A., Koditschek, D.: Toward a dynamical pick and place. In: IROS 1995. IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp. 292–297 (1995)

    Google Scholar 

  8. Rizzi, A., Koditschek, D.: An active visual estimator for dextrous manipulation. IEEE Trans. on Robotics and Automation 12(5), 697–713 (1996)

    Article  Google Scholar 

  9. Allen, P., Timcenko, A., Yoshimi, B., Michelman, P.: Automated tracking and grasping of a moving object with a robotic hand-eye system. IEEE Trans. on Robotics and Automation 9(2), 152–165 (1993)

    Article  Google Scholar 

  10. Butazzo, G., Allota, B., Fanizza, F.: Mousebuster A robot system for catching fast moving objects by vision. In: ICRA 1993. IEEE International Conference on Robotics and Automation, vol. 3, pp. 932–937 (1993)

    Google Scholar 

  11. Drummond, T., Cipolla, R.: Real-time tracking of multiple articulated structures in multiple views. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 20–36. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Malis, E., Benhimane, S.: A unified approach to visual tracking and servoing. Robotics and Autonomous Systems. 52, 39–52 (2005)

    Article  Google Scholar 

  13. Saedi, P., Lowe, D., Lawrence, P.: 3D localization and tracking in unknown environments. In: ICRA 2003. IEEE International Conference on Robotics and Automation, vol. 1, pp. 1297–1303 (2003)

    Google Scholar 

  14. Gangloff, J., Mathelin, M.: High speed visual servoing of a 6 DOF manipulator using MIMO predictive control. In: ICRA 2000. IEEE International Conference on Robotics and Automation, vol. 4, pp. 3751–3756 (2000)

    Google Scholar 

  15. Senoo, T., Namiki, A., Ishikawa, M.: High-speed batting using a multi-jointed manipulator. In: ICRA 2004. IEEE International Conference on Robotics and Automation, vol. 2, pp. 1191–1196 (2004)

    Google Scholar 

  16. Kaneko, M., Higashimori, M., Takenaka, R., Namiki, A., Ishikawa, M.: The 100G capturing robot-too fast to see. In: AIM 2003. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, vol. 8, pp. 37–44 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sukhan Lee Il Hong Suh Mun Sang Kim

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Angel, L., Traslosheros, A., Sebastian, J.M., Pari, L., Carelli, R., Roberti, F. (2007). Vision-Based Control of the RoboTenis System. In: Lee, S., Suh, I.H., Kim, M.S. (eds) Recent Progress in Robotics: Viable Robotic Service to Human. Lecture Notes in Control and Information Sciences, vol 370. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76729-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76729-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76728-2

  • Online ISBN: 978-3-540-76729-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics