Skip to main content

Summary

A major goal of polyhedral combinatorics is to find classes of essential, i.e. facet inducing, inequalities which describe a combinatorially defined polyhedron P. In general this is a difficult task. We consider the case in which we have knowledge of facets for a face F of P, and present a general technique for exploiting the close relationship between such polyhedra in order to obtain facets for P from facets of F. We demonstrate the usefulness of this technique by applying it in three instances where this relationship holds, namely the linear ordering polytope and the acyclic subgraph polytope, the asymmetric travelling salesman polytope and the monotone asymmetric travelling salesman polytope, and the symmetric travelling salesman polytope and the two-connected spanning subgraph polytope. In the last case we obtain a class of facet inducing inequalities for the two-connected spanning subgraph polytope by our procedure. This technique has also been applied by Boyd and Hao (1993) to show a class of inequalities is facet inducing for the two edge connected spanning subgraph polytope, by Leung and Lee (1994) to show a class of inequalities is facet inducing for the acyclic subgraph polytope and by Bauer (1997) to show several classes of inequalities are facet inducing for the circuit polytope.

The above technique requires that we demonstrate validity of an inequality. We discuss the problem of proving an inequality is valid for the integer hull of a polyhedron, and show that this problem is in NP for classes of polyhedra having bounded Chvátal–Gomory rank. This has the following consequence. Suppose we have an integer programming formulation of the members of an NP-complete class of problems with the property that we can, in polynomial time, show the validity of our defining inequalities. Then there will be problems in the class for which a linear system sufficient to define the integer hull will necessarily contain an inequality of arbitrarily large Chvátal–Gomory rank unless NP = co-NP.

Research partially supported by grants from N.S.E.R.C. of Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. http://miplib.zib.de/ (2003)

  • Balas, E., Fischetti, M.: Polyhedral theory for the asymmetric traveling salesman problem. In: Gutin, G., Punnen, A. (eds.) The Traveling Salesman Problem and Its Variations. Springer, New York (2007)

    Google Scholar 

  • Bauer, P.: The circuit polytope: Facets. Math. Oper. Res. 22, 110–145 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Boyd, S.: The subtour polytope of the travelling salesman problem. Ph.D. Thesis, University of Waterloo, Waterloo, Canada (1986)

    Google Scholar 

  • Boyd, S., Hao, T.: An integer polytope related to the design of survivable communication networks. SIAM J. Discrete Math. 6, 612–630 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Boyd, S., Pulleyblank, W.R.: Facet generating techniques. Technical Report TR-91-31, Dept. of Computer Science, University of Ottawa (1993)

    Google Scholar 

  • Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Math. 4, 305–337 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  • Cook, W., Gerards, A.M.H., Schrijver, A., Tardos, E.: Sensitivity theorems in integer linear programming. Math. Program. 34, 251–264 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • Edmonds, J., Lovász, L., Pulleyblank, W.R.: Brick decompositions and the matching rank of graphs. Combinatorica 2, 247–274 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  • Eisenbrand, F.: On the membership problem for the elementary closure of a polyhedron. Combinatorica 19, 297–300 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Fischetti, M., Lodi, A.: Optimizing over the first Chvátal closure. Math. Program. B 110(1), 3–20 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Gomory, R.: Solving linear programming problems in integers. In: Bellman, R.E., Hall, M. Jr. (eds.) Combinatorial Analysis. Am. Math. Soc., Providence (1960)

    Google Scholar 

  • Gomory, R.: An algorithm for integer solutions to linear programs. In: Graves, R., Wolfe, P. (eds.) Recent Advances in Mathematical Programming. McGraw-Hill, New York (1963)

    Google Scholar 

  • Grötschel, M.: Polyedrische Charakterisierungen kombinatorischer Optimierungs-probleme. Hain, Meisenheim am Glan (1977)

    Google Scholar 

  • Grötschel, M., Monma, C.L.: Integer polyhedra arising from certain network design problems with connectivity constraints. SIAM J. Discrete Math. 3, 502–523 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  • Grötschel, M., Padberg, M.: On the symmetric travelling salesman problem I: Inequalities. Math. Program. 16, 265–280 (1979a)

    Article  MATH  Google Scholar 

  • Grötschel, M., Padberg, M.: On the symmetric travelling salesman problem II: Lifting theorems and facets. Math. Program. 16, 281–302 (1979b)

    Article  MATH  Google Scholar 

  • Grötschel, M., Padberg, M.: Polyhedral theory. In: Lawler, E.L., et al. (eds.) The Travelling Salesman Problem. Wiley, New York (1985)

    Google Scholar 

  • Grötschel, M., Pulleyblank, W.R.: Clique tree inequalities and the symmetric travelling salesman problem. Math. Oper. Res. 11, 537–569 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • Grötschel, M., Jünger, M., Reinelt, G.: Facets of the linear ordering polytope. Math. Program. 33, 43–60 (1982a)

    Article  Google Scholar 

  • Grötschel, M., Jünger, M., Reinelt, G.: On the acyclic subgraph polytope. Math. Program. 33, 1–27 (1982b)

    Google Scholar 

  • Grötschel, M., Monma, C.L., Stoer, M.: Facets for polyhedra arising in the design of communication networks with low-connectivity constraints. SIAM J. Optim. 2, 474–504 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • Leung, J., Lee, J.: More facets from fences for linear ordering and acyclic subgraph polytopes. Discrete Appl. Math. 50, 185–200 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  • Mahjoub, A.R.: Two-edge connected spanning subgraphs and polyhedra. Math. Program. 64, 199–208 (1994)

    Article  MathSciNet  Google Scholar 

  • Naddef, D., Rinaldi, G.: The graphical relaxation: A new framework for the travelling salesman polytope. Math. Program. 58, 53–88 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley-Interscience, New York (1988)

    MATH  Google Scholar 

  • Padberg, M.W., Rao, M.R.: Odd minimum cut-sets and b-matchings. Math. Oper. Res. 7, 67–80 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  • Pulleyblank, W.R.: Polyhedral combinatorics. In: Nemhauser, G.L., et al. (eds.) Handbooks in Operational Research and Management Science, vol. 1. Elsevier Science/North-Holland, Amsterdam (1989)

    Google Scholar 

  • Pulleyblank, W.R., Edmonds, J.: Facets of 1-matching polyhedra. In: Berge, C., Ray-Chaudhuri, D.K. (eds.) Hypergraph Seminar. Lecture Notes in Mathematics, vol. 411, pp. 214–242. Springer, Berlin (1974)

    Chapter  Google Scholar 

  • Schrijver, A.: On cutting planes. Ann. Discrete Math. 9, 291–296 (1980)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boyd, S., Pulleyblank, W.R. (2009). Facet Generating Techniques. In: Cook, W., Lovász, L., Vygen, J. (eds) Research Trends in Combinatorial Optimization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76796-1_2

Download citation

Publish with us

Policies and ethics