Skip to main content

Modeling and Simulation of Hairy Root Growth

  • Chapter
Mathematics – Key Technology for the Future

Abstract

A multiscale approach is presented to model growth of hairy roots. On the macroscopic scale, a continuous model is derived, which includes growth and nutrient transport. Water transport is considered on the microscopic scale. A Discontinuous Galerkin scheme for complex geometries is used to compute the permeability of root bulks. This permeability constitutes the linkage between microand macroscopic scale. The models are applied then to describe shaker cultures of hairy roots and simulations are compared to measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber, M. Ohlberger, and O. Sander. A generic grid interface for parallel and adaptive scientific computing. part ii: Implementation and tests in dune. Preprint, 2007. Submitted to Computing.

    Google Scholar 

  2. P. Bastian, A. Chavarría-Krauser, C. Engwer, W. Jäger, S. Marnach, and M. Ptashnyk. Modelling in vitro growth of dense root networks. In preparation, 2007.

    Google Scholar 

  3. P. Bastian, M. Droske, C. Engwer, R. Klöfkorn, T. Neubauer, M. Ohlberger, and M. Rumpf. Towards a unified framework for scientific computing. In R. Kornhuber, R.H.W. Hoppe, D.E. Keyes, J. Périaux, O. Pironneau, and J. Xu, editors, Domain Decomposition Methods in Science and Engineering, number 40 in Lecture Notes in Computational Science and Engineering, pages 167–174. Springer-Verlag, 2004.

    Google Scholar 

  4. G. P. Boswell, H. Jacobs, F. A. Davidson, G. M. Gadd, and K. Ritz. Growth and function of fungal mycelia in heterogeneous environments. Bulletin of Mathematical Biology, 65:447–477, 2003.

    Article  Google Scholar 

  5. S. Chuai-Aree, S. Siripant, W. Jäger, and H.G. Bock. PlantVR: Software for Simulation and Visualization of Plant Growth Model. In Proceedings of PMA06: The Second International Symposium on Plant growth Modeling, Simulation, Visualization and Applications. Beijing, 2006.

    Google Scholar 

  6. P. M. Doran. Hairy Roots: Culture and Applications. Harwood Academic Publishers, Amsterdam, 1997.

    Google Scholar 

  7. L. Edelstein-Keshet. Mathematical models in biology. The Random House/ Birkhäuser Mathematics Series, New York, 1988.

    Google Scholar 

  8. C. Engwer and P. Bastian. A Discontinuous Galerkin Method for Simulations in Complex Domains. Technical Report 5707, IWR , Universität Heidelberg, http://www.ub.uni-heidelberg.de/archiv/5707/, 2005.

    Google Scholar 

  9. Y. J. Kim, P. J. Weathers, and B. E. Wyslouzil. Growth of Artemisia annua hairy roots in liquid and gas-phase reactors. Biotechnology and Bioengineering, 80:454–464, 2002.

    Article  Google Scholar 

  10. Y. J. Kim, P. J. Weathers, and B. E. Wyslouzil. Growth dynamics of Artemisia annua hairy roots in three culture systems. Journal of Theoretical Biology, 83:428–443, 2003.

    Google Scholar 

  11. Y. J. Kim, B. E. Wyslouzil, and P. J. Weathers. Invited review: Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cell. Dev. Biol. Plant, 38:1–10, 2002.

    Google Scholar 

  12. Randall J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, 2002.

    Google Scholar 

  13. William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3d surface construction algorithm. In SIGGRAPH ’87: Proceedings of the 14th annual conference on Computer graphics and interactive techniques, pages 163–169, New York, NY, USA, 1987. ACM Press.

    Google Scholar 

  14. E. Odegaard, K. M. Nielsen, T. Beisvag, K. Evjen, A. Johnsson, O. Rasmussen, and T. H. Iversen. Agravitropic behaviour of roots of rapeseed (Brassica napus L.) transformed by Agrobacterium rhizogenes. J Gravit Physiol., 4(3):5–14, 1997.

    Google Scholar 

  15. J. T. Oden, I. Babuška, and C. E. Baumann. A discontinuous hp-finite element method for diffusion problems. Journal of Computational Physics, 146:491–519, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Ptashnyk. Derivation of a macroscopic model for nutrient uptake by a single branch of hairy-roots. University Heidelberg, Preprint, 2007.

    Google Scholar 

  17. D. Ramakrishnan and R. W. Curtis. Trickle-bed root culture bioreactor design and scale-up: Growth, fluid-dynamics, and oxygen mass transfer. Biotechnology and Bioengineering, 88(2):248–260, 2004.

    Article  Google Scholar 

  18. B. Rivière and M.F. Wheeler. Discontinuous galerkin methods for flow and transport problems in porous media. Communications in Numerical Methods in Engineering, 18:63–68, 2002.

    Article  MATH  Google Scholar 

  19. B. Rivière and M.F. Wheeler. A posteriori error estimates and mesh adaptation strategy for discontinuous galerkin methods applied to diffusion problems. Computers & Mathematics with Applications, 46(1):141–163, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Robinson. Tansley review no. 73. The responses of plants to non-uniform supplies of nutrients. The New Phytologist, 127:635–674, 1994.

    Article  Google Scholar 

  21. S. R. Schnapp, W. R. Curtis, R. A. Bressan, and P. M. Hasegawa. Growth yields and maintenance coefficients of unadapted and NaCI-adapted tobacco cells grown in semicontinuous culture. Plant Physiol, 96:1289–1293, 1991.

    Google Scholar 

  22. J. Stoer and R. Burlisch. Numerische Mathematik 2. Springer, 4 edition, 2000.

    Google Scholar 

  23. Gilbert Strang. On the construction and comparison of difference schemes. SIAM J. Numer. Anal., 5:506–517, 1968.

    Article  MathSciNet  Google Scholar 

  24. H. Sudo, T. Yamakawa, M. Yamazaki, N. Aimi, and K. Saito. Bioreactor production of camptothecin by hairy root cultures of Ophiorrhiza pumila. Biotechnology Letters, 24:359–363, 2002.

    Article  Google Scholar 

  25. P. K. Sweby. High resolution schemes using flux-limiters for hyperbolic conservation laws. SIAM J. Num. Anal., 21:995–1011, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  26. C. H. Takimoto, J. Wright, and S. G. Arbuck. Clinical applications of the camptothecins. Biochim Biophys Acta, 1400:107–119, 1998.

    Google Scholar 

  27. M. Wink, A. W. Alfermann, R. Franke, B. Wetterauer, M. Distl, J. Windhövel, O. Krohn, E. Fuss, H. Garden, A. Mohagheghzadeh, E. Wildi, and P. Ripplinger. Sustainable bioproduction of phytochemicals by plant in vitro cultures: anticancer agents. Plant Genetic Resources. NIAB., 3(2):90–100, 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bastian, P. et al. (2008). Modeling and Simulation of Hairy Root Growth. In: Krebs, HJ., Jäger, W. (eds) Mathematics – Key Technology for the Future. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77203-3_8

Download citation

Publish with us

Policies and ethics