Skip to main content

Subversion of Cell Cycle Regulatory Pathways

  • Chapter
Human Cytomegalovirus

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 325))

Human cytomegalovirus (HCMV) has evolved numerous strategies to commandeer the host cell for producing viral progeny. The virus manipulates host cell cycle pathways from the early stages of infection to stimulate viral DNA replication at the expense of cellular DNA synthesis. At the same time, cell cycle checkpoints are by-passed, preventing apoptosis and allowing sufficient time for the assembly of infectious virus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn JH, Hayward GS (1997) The major immediate-early proteins IE1 and IE2 of human cytomegalovirus colocalize with and disrupt PML-associated nuclear bodies at very early times in infected permissive cells. J Virol 71:4599–4613.

    PubMed  CAS  Google Scholar 

  • Ahn JH, Brignole ER, Hayward GS (1998) Disruption of PML subnuclear domains by the acidic IE1 protein of human cytomegalovirus is mediated through interaction with PML and may modulate a RING finger-dependent cryptic transactivator function of PML. Mol Cell Biol 18:4899–4913.

    PubMed  CAS  Google Scholar 

  • Biswas N, Sanchez V, Spector DH (2003) Human cytomegalovirus infection leads to accumulation of geminin and inhibition of the licensing of cellular DNA replication. J Virol 77:2369–2376.

    Article  PubMed  CAS  Google Scholar 

  • Boldogh I, AbuBakar S, Deng CZ, Albrecht T (1991) Transcriptional activation of cellular oncogenes fos,jun and myc by human cytomegalovirus. J Virol 65:1568–1571.

    PubMed  CAS  Google Scholar 

  • Bonin LR, McDougall JK (1997) Human cytomegalovirus IE2 86-kilodalton protein binds p53 but does not abrogate G1 checkpoint function. J Virol 71:5831–5870.

    Google Scholar 

  • Bottazzi ME, Buzzai M, Zhu X, Desdouets C, Brechot C, Assoian RK (2001) Distinct effects of mitogens and actin cytoskeleton on CREB and pocket protein phosphorylation control the extent and timing of cyclin A promoter activity. Mol Cell Biol 21:7607–7616.

    Article  PubMed  CAS  Google Scholar 

  • Brandeis M, Hunt T (1996) The proteolysis of mitotic cyclins in mammalian cells persists from the end of mitosis until the onset of S phase. EMBO J 15:5280–5289.

    PubMed  CAS  Google Scholar 

  • Bresnahan WA, Shenk TE (2000) UL82 virion protein activates expression of immediate early viral genes in human cytomegalovirus-infected cells. Proc Natl Acad Sci U S A 97:14506–14511.

    Article  PubMed  CAS  Google Scholar 

  • Bresnahan WA, Boldogh I, Ma T, Albrecht T, Thompson EA (1996a) Cyclin E/CDK2 activity is controlled by different mechanisms in the G0 and G1 phases of the cell cycle. Cell Growth Differ 7:1283–1290.

    PubMed  CAS  Google Scholar 

  • Bresnahan WA, Boldogh I, Thompson EA, Albrecht T (1996b) Human cytomegalovirus inhibits cellular DNA synthesis and arrests productively infected cells in late G1. Virology 224:156–160.

    Article  Google Scholar 

  • Bresnahan WA, Boldogh I, Chi P, Thompson EA, Albrecht T (1997) Inhibition of cellular CDK2 activity blocks human cytomegalovirus replication. Virology 231:239–247.

    Article  PubMed  CAS  Google Scholar 

  • Bresnahan WA, Albrecht T, Thompson EA (1998) The cyclin E promoter is activated by human cytomegalovirus 86-kDa immediate early protein. J Biol Chem 273:22075–22082.

    Article  PubMed  CAS  Google Scholar 

  • Browne EP, Wing B, Coleman D, Shenk T (2001) Altered cellular mRNA levels in human cytomegalovirus-infected fibroblasts: viral block to the accumulation of antiviral mRNAs. J Virol 75:12319–12330.

    Article  PubMed  CAS  Google Scholar 

  • Cantrell SR, Bresnahan WA (2005) Interaction between the human cytomegalovirus UL82 gene product (pp71) and hDaxx regulates immediate-early gene expression and viral replication. J Virol 79:7792–7802.

    Article  PubMed  CAS  Google Scholar 

  • Casavant NC, Luo MH, Rosenke K, Winegardner T, Zurawska A, Fortunato EA (2006) Potential role for p53 in the permissive life cycle of human cytomegalovirus. J Virol 80:8390–8401.

    Article  PubMed  CAS  Google Scholar 

  • Castano E, Kleyner Y, Dynlacht BD (1998) Dual cyclin-binding domains are required for p107 to function as a kinase inhibitor. Mol Cell Biol 18:5380–5391.

    PubMed  CAS  Google Scholar 

  • Castillo JP, Yurochko A, Kowalik TF (2000) Role of human cytomegalovirus immediate-early proteins in cell growth control. J Virol 74:8028–8037.

    Article  PubMed  CAS  Google Scholar 

  • Castillo JP, Frame FM, Rogoff HA, Pickering MT, Yurochko AD, Kowalik TF (2005) Human cytomegalovirus IE1–72 activates ataxia telangiectasia mutated kinase and a p53/p21-mediated growth arrest response. J Virol 79:11467–11475.

    Article  PubMed  CAS  Google Scholar 

  • Challacombe JF, Rechtsteiner A, Gottardo R, Rocha LM, Browne EP, Shenk T, Altherr MR, Brettin TS (2004) Evaluation of the host transcriptional response to human cytomegalovirus infection. Physiol Genomics 18:51–62.

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Fang G (2001) MAD2B is an inhibitor of the anaphase-promoting complex. Genes Devel 15:1765–1770.

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Knutson E, Kurosky A, Albrecht T (2001) Degradation of p21cip1 in cells productively infected with human cytomegalovirus. J Virol 75:3613–3625.

    Article  PubMed  CAS  Google Scholar 

  • De Azevedo WF, Leclerc S, Meijer L, Havlicek L, Strnad M, Kim SH (1997) Inhibition of cyclin-dependent kinases by purine analogues: crystal structure of human cdk2 complexed with roscovitine. Eur J Biochem 243:518–526.

    Article  PubMed  Google Scholar 

  • Desdouets C, Matesic G, Molina CA, Foulkes NS, Sassone-Corsi P, Bréchot C, Sobszak-Thepot J (1995) Cell cycle regulation of cyclin A gene expression by the cyclic AMP transcription factors CREB and CREM. Mol Cell Biol 15:3301–3309.

    PubMed  CAS  Google Scholar 

  • Diffley JF (2001) DNA replication: building the perfect switch. Curr Biol 11:R367–R370.

    Article  PubMed  CAS  Google Scholar 

  • Dittmer D, Mocarski ES (1997) Human cytomegalovirus infection inhibits G1/S transition. J Virol 71:1629–1634.

    PubMed  CAS  Google Scholar 

  • Dunn W, Chou C, Li H, Hai R, Patterson D, Stolc V, Zhu H, Liu F (2003) Functional profiling of a human cytomegalovirus genome. Proc Natl Acad Sci U S A 100:14223–14228.

    Article  PubMed  CAS  Google Scholar 

  • Dyson N (1998) The regulation of E2F by pRB-family proteins. Genes Dev 12:2245–2262.

    Article  PubMed  CAS  Google Scholar 

  • Ekholm-Reed S, Mendez J, Tedesco D, Zetterberg A, Stillman B, Reed SI (2004) Deregulation of cyclin E in human cells interferes with prereplication complex assembly. J Cell Biol 165:789–800.

    Article  PubMed  CAS  Google Scholar 

  • Estes JE, Huang E-S (1977) Stimulation of cellular thymidine kinases by human cytomegalovirus. J Virol 24:13–21.

    PubMed  CAS  Google Scholar 

  • Ferguson M, Henry PA, Currie RA (2003) Histone deacetylase inhibition is associated with transcriptional repression of the Hmga2 gene. Nucleic Acids Res 31:3123–3133.

    Article  PubMed  CAS  Google Scholar 

  • Fortunato EA, Sommer MH, Yoder K, Spector DH (1997) Identification of domains within the human cytomegalovirus major immediate-early 86-kilodalton protein and the retinoblastoma protein required for physical and functional interaction with each other. J Virol 71:8176–8185.

    PubMed  CAS  Google Scholar 

  • Fortunato EA, Spector DH (1998) p53 and RPA are sequestered in viral replication centers in the nuclei of cells infected with human cytomegalovirus. J Virol 72:2033–2039.

    PubMed  CAS  Google Scholar 

  • Fortunato EA, Dell’Aquila ML, Spector DH (2000) Specific chromosome 1 breaks induced by human cytomegalovirus. Proc Natl Acad Sci U S A 97:853–858.

    Article  PubMed  CAS  Google Scholar 

  • Fortunato EA, Sanchez V, Yen JY, Spector DH (2002) Infection of cells with human cytomegalovirus during S phase results in a blockade to immediate-early gene expression that can be overcome by inhibition of the proteasome. J Virol 76:5369–5379.

    Article  PubMed  CAS  Google Scholar 

  • Fujita M (1999) Cell cycle regulation of DNA replication initiation proteins in mammalian cells. Front Biosci 4: D816–D823.

    Article  PubMed  CAS  Google Scholar 

  • Gaspar M, Shenk T (2006) Human cytomegalovirus inhibits a DNA damage response by mislocalizing checkpoint proteins. Proc Natl Acad Sci U S A 103:2821–2826.

    Article  PubMed  CAS  Google Scholar 

  • Geng Y, Yu Q, Sicinska E, Das M, Schneider JE, Bhattacharya S, Rideout WM, Bronson RT, Gardner H, Sicinski P (2003) Cyclin E ablation in the mouse. Cell 114:431–443.

    Article  PubMed  CAS  Google Scholar 

  • Geng Y, Lee YM, Welcker M, Swanger J, Zagozdzon A, Winer JD, Roberts JM, Kaldis P, Clurman BE, Sicinski P (2007) Kinase-independent function of cyclin E. Mol Cell 25:127–139.

    Article  PubMed  CAS  Google Scholar 

  • Glotzer M, Murray AW, Kirschner MW (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349:132–138.

    Article  PubMed  CAS  Google Scholar 

  • Greaves RF, Mocarski ES (1998) Defective growth correlates with reduced accumulation of a viral DNA replication protein after low-multiplicity infection by a human cytomegalovirus ie1 mutant. J Virol 72:366–379.

    PubMed  CAS  Google Scholar 

  • Hagemeier C, Caswell R, Hayhurst G, Sinclair J, Kouzarides T (1994) Functional interaction between the HCMV IE2 transactivator and the retinoblastoma protein. EMBO J 13:2897–2903.

    PubMed  CAS  Google Scholar 

  • Hansen K, Farkas T, Lukas J, Holm K, Roonstrand L, Bartek J (2001) Phosphorylation-dependent and -independent functions of p130 cooperate to evoke a sustained G1 block. EMBO J 20:422–432.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi ML, Blankenship C, Shenk T (2000) Human cytomegalovirus UL69 is required for efficient accumulation of infected cells in the G1 phase of the cell cycle. Proc Natl Acad Sci U S A 97:2692–2696.

    Article  PubMed  CAS  Google Scholar 

  • Henglein B, Chenivesse X, Wang J, Eick D, Bréchot C (1994) Structure and cell cycle-regulated transcription of the human cyclin A gene. Proc Natl Acad Sci U S A 91:5490–5494.

    Article  PubMed  CAS  Google Scholar 

  • Hertel L, Mocarski ES (2004) Global analysis of host cell gene expression late during cytomegalovirus infection reveals extensive dysregulation of cell cycle gene expression and induction of pseudomitosis independent of US28 function. J Virol 78:11988–12011.

    Article  PubMed  CAS  Google Scholar 

  • Hertel L, Chou S, Mocarski ES (2007) Viral and cell cycle-regulated kinases in cytomegalovirus-induced pseudomitosis and replication. PLoS Pathog:e6.

    Google Scholar 

  • Hirai K, Watanabe Y (1976) Induction of α-type DNA polymerases in human cytomegalovirus-infected WI-38 cells. Biochim Biophys Acta 447:328–339.

    PubMed  CAS  Google Scholar 

  • Hofmann H, Sindre H, Stamminger T (2002) Functional interaction between the pp71 protein of human cytomegalovirus and the PML-interacting protein human Daxx. J Virol 76:5769–5783.

    Article  PubMed  CAS  Google Scholar 

  • Hsu C-H, Chang MDT, Tai K-Y, Yang Y-T, Wang P-S, Chen C-J, Wang Y-H, Lee S-C, Wu C-W, Juan L-J (2004) HCMV IE2-mediated inhibition of HAT activity downregulates p53 function. EMBO J 23:2269–2280.

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Colburn NH (2005) Histone deacetylase inhibition down-regulates cyclin D1 transcription by inhibiting nuclear factor-kappaB/p65 DNA binding. Cancer Res 3:100–109.

    Article  CAS  Google Scholar 

  • Ishov AM, Maul GG (1996) The periphery of nuclear domain 10 (ND10) as site of DNA virus deposition. J Cell Biol 134:815–826.

    Article  PubMed  CAS  Google Scholar 

  • Ishov AM, Stenberg RM, Maul GG (1997) Human cytomegalovirus immediate early interaction with host nuclear structures: definition of an immediate transcript environment. J Cell Biol 138:5–16.

    Article  PubMed  CAS  Google Scholar 

  • Ishov AM, Vladimirova OV, Maul GG (2002) Daxx-mediated accumulation of human cytomegalovirus tegument protein pp71 at ND10 facilitates initiation of viral infection at these nuclear domains. J Virol 76:7705–7712.

    Article  PubMed  CAS  Google Scholar 

  • Isom HC (1979) Stimulation of ornithine carboxylase by human cytomegalovirus. J Gen Virol 42:265–278.

    Article  PubMed  CAS  Google Scholar 

  • Jault FM, Jault J-M, Ruchti F, Fortunato EA, Clark C, Corbeil J, Richman DD, Spector DH (1995) Cytomegalovirus infection induces high levels of cyclins, phosphorylated RB, and p53, leading to cell cycle arrest. J Virol 69:6697–6704.

    PubMed  CAS  Google Scholar 

  • Johnson RA, Yurochko AD, Poma EE, Zhu L, Huang E-S (1999) Domain mapping of the human cytomegalovirus IE1–72 and cellular p107 protein–protein interaction and the possible functional consequences. J Gen Virol 80:1293–1303.

    PubMed  CAS  Google Scholar 

  • Kalejta RF, Shenk T (2003) The human cytomegalovirus UL82 gene product (pp71) accelerate progression through the G1 phase of the cell cycle. J Virol 77:3451–3459.

    Article  PubMed  CAS  Google Scholar 

  • Kalejta RF, Bechtel JT, Shenk T (2003) Human cytomegalovirus pp71 stimulates cell cycle progression by inducing the proteasome-dependent degradation of the retinoblastoma family of tumor suppressors. Mol Cell Biol 23:1885–1895.

    Article  PubMed  CAS  Google Scholar 

  • Kapasi AJ, Spector DH (2008) Inhibition of the cyclin-dependent kinases at the beginning of the human cytomegalovirus infection specifically alters the levels and localization of the RNA polymerase II carboxyl-terminal domain kinases cdk9 and cdk7 at the viral transcriptosome. J Virol 82:394–407.

    Article  PubMed  CAS  Google Scholar 

  • Kelly C, Driel RV, Wilkinson GW (1995) Disruption of PML-associated nuclear bodies during human cytomegalovirus infection. J Gen Virol 76:2887–2893.

    Article  PubMed  CAS  Google Scholar 

  • Korioth F, Maul GG, Plachter B, Stamminger T, Frey J (1996) The nuclear domain 10 (ND10) is disrupted by the human cytomegalovirus gene product IE1. Exp Cell Res 229:155–158.

    Article  PubMed  CAS  Google Scholar 

  • Lavin MF, Gueven N (2006) The complexity of p53 stabilization and activation. Cell Death Differ 13:941–950.

    Article  PubMed  CAS  Google Scholar 

  • Lei M, Tye BK (2001) Initiating DNA synthesis: from recruiting to activating the MCM complex. J Cell Sci 114:1447–1454.

    PubMed  CAS  Google Scholar 

  • Lu M, Shenk T (1996) Human cytomegalovirus infection inhibits cell cycle progression at multiple points, including the transition from G1 to S. J Virol 70:8850–8857.

    PubMed  CAS  Google Scholar 

  • Lu M, Shenk T (1999) Human cytomegalovirus UL69 protein induces cells to accumulate in G1 phase of the cell cycle. J Virol 73:676–683.

    PubMed  CAS  Google Scholar 

  • Lukas J, Lukas C, Bartek J (2004) Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. DNA Repair 3:997–1007.

    Article  PubMed  CAS  Google Scholar 

  • Luo MH, Rosenke K, Czornak K, Fortunato EA (2007) Human cytomegalovirus disrupts both ataxia telangiectasia mutated protein (ATM)- and ATM-Rad3-related kinase-mediated DNA damage responses during lytic infection. J Virol 81:1934–1950.

    Article  PubMed  CAS  Google Scholar 

  • Machida YJ, Hamlin JL, Dutta A (2005) Right place, right time, and only once: replication initiation in metazoans. Cell 123:13–24.

    Article  PubMed  CAS  Google Scholar 

  • Maiorano D, Moreau J, Mechali M (2000) XCDT1 is required for the assembly of pre-replicative complexes in Xenopus laevis. Nature 404:622–625.

    Article  PubMed  CAS  Google Scholar 

  • Margolis MJ, Panjovic S, Wong EL, Wade M, Jupp R, Nelson JA, Azizkhan JC (1995) Interaction of the 72-kilodalton human cytomegalovirus IE1 gene product with E2F1 coincides with E2F-dependent activation of dihydrofolate reductase transcription. J Virol 69: 7759–7767.

    PubMed  CAS  Google Scholar 

  • Marshall KR, Rowley KV, Rinaldi A, Nicholson IP, Ishov AM, Maul GG, Preston CM (2002) Activity and intracellular localization of the human cytomegalovirus protein pp71. J Gen Virol 83:1601–1612.

    PubMed  CAS  Google Scholar 

  • McElroy AK, Dwarakanath RS, Spector DH (2000) Dysregulation of cyclin E gene expression in human cytomegalovirus-infected cells requires viral early gene expression and is associated with changes in the Rb-related protein p130. J Virol 74:4192–4206.

    Article  PubMed  CAS  Google Scholar 

  • McGarry TJ, Kirschner MW (1998) Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93:1043–1053.

    Article  PubMed  CAS  Google Scholar 

  • Millar JBA, Russell P (1992) The cdc25 M-phase inducer: an unconventional protein phosphatase. Cell 68:407–410.

    Article  PubMed  CAS  Google Scholar 

  • Muganda P, Mendoza O, Hernandez J, Qian Q (1994) Human cytomegalovirus elevates levels of the cellular protein p53 in infected fibroblasts. J Virol 68:8028–8034.

    PubMed  CAS  Google Scholar 

  • Murphy EA, Streblow DN, Nelson JA, Stinski MF (2000) The human cytomegalovirus IE86 protein can block cell cycle progression after inducing transition into the S phase of the cell cycle. J Virol 74:7108–7118.

    Article  PubMed  CAS  Google Scholar 

  • Nishitani H, Lygerou Z (2002) Control of DNA Replication. Genes Cells 7:523–534.

    Article  PubMed  CAS  Google Scholar 

  • Nishitani H, Lygerou Z, Nishimoto T, Nurse P (2000) The Cdt1 protein is required to license DNA for replication in fission yeast. Nature 404:625–628.

    Article  PubMed  CAS  Google Scholar 

  • Nishitani H, Taraviras S, Lygerou Z, Nishimoto T (2001) The human licensing factor or DNA replication cdt1 accumulates in G1 and is destabilized after initiation of S-phase. J Biol Chem 276:44905–44911.

    Article  PubMed  CAS  Google Scholar 

  • Noris E, Zannetti C, Demurtas A, Sinclair J, De Andrea M, Gariglio M, Landolfo S (2002) Cell cycle arrest by human cytomegalovirus 86-kDa IE2 protein resembles premature senescence. J Virol 76:12135–12148.

    Article  PubMed  CAS  Google Scholar 

  • Pajovic S, Wong EL, Black AR, Azizkhan JC (1997) Identification of a viral kinase that phosphorylates specify E2Fs and pocket proteins. Mol Cell Biol 17:6459–6464.

    PubMed  CAS  Google Scholar 

  • Petrik DT, Schmitt KP, Stinski MF (2006) Inhibition of cellular DNA synthesis by the human cytomegalovirus IE86 protein is necessary for efficient virus replication. J Virol 80:3872–3883.

    Article  PubMed  CAS  Google Scholar 

  • Poma EE, Kowalik TF, Zhu L, Sinclair JH, Huang E-S (1996) The human cytomegalovirus 1E1–72 protein interacts with the cellular p107 protein and relieves p107-mediated transcriptional repression of an E2F-responsive promoter. J Virol 70:7867–7877.

    PubMed  CAS  Google Scholar 

  • Rialland M, Sola F, Santocanale C (2002) Essential role of human CDT1 in DNA replication and chromatin licensing. J Cell Sci 115:1435–1440.

    PubMed  CAS  Google Scholar 

  • Rosenke K, Samuel MA, McDowell ET, Toerne MA, Fortunato EA (2006) An intact sequence-specific DNA-binding domain is required for human cytomegalovirus-mediated sequestration of p53 and may promote in vivo binding to the viral genome during infection. Virology 348:19–34.

    Article  PubMed  CAS  Google Scholar 

  • Saffert RT, Kalejta RF (2006) Inactivating a cellular intrinsic immune defense mediated by Daxx is the mechanism through which the human cytomegalovirus pp71 protein stimulates viral immediate-early gene expression. J Virol 80:3863–3871.

    Article  PubMed  CAS  Google Scholar 

  • Salvant BS, Fortunato EA, Spector DH (1998) Cell cycle dysregulation by human cytomegalovirus: influence of the cell cycle phase at the time of infection and effects on cyclin transcription. J Virol 72:3729–3741.

    PubMed  CAS  Google Scholar 

  • Sanchez V, Spector DH (2006) Cyclin-dependent kinase activity is required for efficient expression and posttranslational modification of human cytomegalovirus proteins and for production of extracellular particles. J Virol 80:5886–5896.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez V, Clark CL, Yen JY, Dwarakanath R, Spector DH (2002) Viable human cytomegalovirus recombinant virus with an internal deletion of the IE2 86 gene affects late stages of viral replication. J Virol 76:2973–2989.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez V, McElroy AK, Spector DH (2003) Mechanisms governing maintenance of cdk1/cyclin B1 kinase activity in cells infected with human cytomegalovirus. J Virol 77:13214–13224.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez V, McElroy AK, Yen J, Tamrakar S, Clark CL, Schwartz RA, Spector DH (2004) Cyclin-dependent kinase activity is required at early times for accurate processing and accumulation of the human cytomegalovirus UL122–123 and UL37 immediate-early transcripts and at later times for virus production. J Virol 78:11219–11232.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez V, Mahr JA, Orazio N, Spector DH (2007) Nuclear export of the human cytomegalovirus tegument protein pp65 requires cyclin-dependent kinase activity and the Crm1 exporter. J Virol 81:11730–11736.

    Article  PubMed  CAS  Google Scholar 

  • Schulze A, Zerfass K, Spitkovsky D, Middendorp S, Berges J, Helin K, Jansen-Dürr P, Henglein B (1995) Cell cycle regulation of the cyclin A gene promoter is mediated by a variant E2F site. Proc Natl Acad Sci U S A 92:11264–11268.

    Article  PubMed  CAS  Google Scholar 

  • Shen YH, Utama B, Wang J, Raveendran M, Senthil D, Waldman WJ, Belcher JD, Vercellotti G, Martin D, Mitchelle BM, Wang XL (2004) Human cytomegalovirus causes endothelial injury through the ataxia telangiectasia mutant and p53 DNA damage signaling pathways. Circ Res 94:1310–1317.

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ (1996) Cancer cell cycles. Science 274:1672–1677.

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ (2000) The Pezcoller Lecture: Cancer cell cycles revisited. Cancer Research 60:3689–3695.

    PubMed  CAS  Google Scholar 

  • Shlapobersky M, Sanders R, Clark C, Spector DH (2006) Repression of HMGA2 gene expression by human cytomegalovirus involves the IE2 86-kilodalton protein and is necessary for efficient viral replication and inhibition of cyclin A transcription. J Virol 80:9951–9961.

    Article  PubMed  CAS  Google Scholar 

  • Slee EA, O’Connor DJ, Lu X (2004) To die or not to die: how does p53 decide? Oncogene 23:2809–2818.

    Article  PubMed  CAS  Google Scholar 

  • Sommer MH, Scully AL, Spector DH (1994) Trans-activation by the human cytomegalovirus IE2 86 kDa protein requires a domain that binds to both TBP and RB. J Virol 68:6223–6231.

    PubMed  CAS  Google Scholar 

  • Song Y-J, Stinski MF (2002) Effect of the human cytomegalovirus IE86 protein on expression of E2F responsive genes: a DNA microarray analysis. Proc Natl Acad Sci U S A 99:2836–2841.

    PubMed  CAS  Google Scholar 

  • Song YJ, Stinski MF (2005) Inhibition of cell division by the human cytomegalovirus IE86 protein: role of the p53 pathway or cyclin-dependent kinase 1/cyclin B1. J Virol 79:2597–2603.

    Article  PubMed  CAS  Google Scholar 

  • Speir E, Modali R, Huang E-S, Leon MB, Sahwl F, Finkel T, Epstein SE (1994) Potential role of human cytomegalovirus and p53 interaction in coronary restenosis. Science 265:391–394.

    Article  PubMed  CAS  Google Scholar 

  • Tamrakar S, Kapasi AJ, Spector DH (2005) Human cytomegalovirus infection induces specific hyperphosphorylation of the carboxyl-terminal domain of the large subunit of RNA polymerase II that is associated with changes in the abundance, activity, and localization of cdk9 and cdk7. J Virol 79:15477–15493.

    Article  PubMed  CAS  Google Scholar 

  • Tessari MA, Gostissa M, Altamura S, Sgarra R, Rustighi A, Salvagno C, Caretti G, Imbriano C, Mantovani R, Sal GD, Giancotti V, Manfioletti G (2003) Transcriptional activation of the cyclin A gene by the architectural transcription factor HMGA2. Mol Cell Biol 23:9104–9116.

    Article  PubMed  CAS  Google Scholar 

  • Tran K, Mahr JA, Choi J, Teodoro JG, Green MR, Spector DH (2008) Accumulation of substrates of the anaphase-promoting complex (APC) during human cytomegalovirus infection is associated with the phosphorylation of cdh1 and the dissociation and relocalization of the APC subunits. J Virol 82:529–537.

    Article  PubMed  CAS  Google Scholar 

  • Vassilev LT, Tovar C, Chen S, Knezevic D, Zhao X, Sun H, Heimbrook DC, Chen L (2006) Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc Natl Acad Sci U S A 103:10660–10665.

    Article  PubMed  CAS  Google Scholar 

  • Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nature Rev 2:594–604.

    Article  CAS  Google Scholar 

  • Wade M, Kowalik TF, Mudryj M, Huang ES, Azizkhan JC (1992) E2F mediates dihydrofolate reductase promoter activation and multiprotein complex formation in human cytomegalovirus infection. Mol Cell Biol 12:4364–4374.

    PubMed  CAS  Google Scholar 

  • Wiebusch L, Hagemeier C (1999) Human cytomegalovirus 86-kilodalton IE2 protein blocks cell cycle progression in G1. J Virol 73:9274–9283.

    PubMed  CAS  Google Scholar 

  • Wiebusch L, Hagemeier C (2001) The human cytomegalovirus immediate early 2 protein dissociates cellular DNA synthesis from cyclin dependent kinase activation. EMBO J 20:1086–1098.

    Article  PubMed  CAS  Google Scholar 

  • Wiebusch L, Asmar J, Uecker R, Hagemeier C (2003) Human cytomegalovirus immediate-early protein 2 (IE2)-mediated activation of cyclin E is cell-cycle-independent and forces S-phase entry in IE2-arrested cells. J Gen Virol 84:51–60.

    Article  PubMed  CAS  Google Scholar 

  • Wiebusch L, Bach M, Uecker R, Hagemeier C (2005) Human cytomegalovirus inactivates the G0/G1-APC/C ubiquitin ligase by Cdh1 dissociation. Cell Cycle 4:1435–1439.

    PubMed  CAS  Google Scholar 

  • Woo MS, Sanchez I, Dynlacht BD (1997) p130 and p107 use a conserved domain to inhibit cellular cyclin-dependent kinase activity. Mol Cell Biol 17:3566–3579.

    PubMed  CAS  Google Scholar 

  • Zannetti C, Mondini M, Andrea MD, Caposio P, Hara E, Peters G, Gribaudo G, Gariglio M, Landolfo S (2006) The expression of p16INK4a tumor suppressor is upregulated by human cytomegalovirus infection and required for optimal viral replication. Virology 349:79–86.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Huong S-M, Wang X, Huang DY, Huang E-S (2003) Interactions between human cytomegalovirus IE1–72 and cellular p107: functional domains and mechanisms of up-regulation of cyclin E/cdk2 kinase activity. J Virol 77:12660–12670.

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Cong JP, Shenk T (1997) Use of differential display analysis to assess the effect of human cytomegalovirus infection on the accumulation of cellular RNAs: induction of interferon-responsive RNAs. Proc Natl Acad Sci U S A 94:13985–13990.

    Article  PubMed  CAS  Google Scholar 

  • Zwicker J, Muller R (1997) Cell-cycle regulation of gene expression by transcriptional repression. Trends in Genetics 13:3–6.

    Article  PubMed  CAS  Google Scholar 

  • Zwicker J, Lucibello FC, Wolfraim LA, Gross C, Truss M, Engeland K, Muller R (1995) Cell cycle regulation of the cyclin A, cdc25C and cdc2 genes is based on a common mechanism of transcriptional repression. EMBO J 15:4514–4522.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sanchez, V., Spector, D.H. (2008). Subversion of Cell Cycle Regulatory Pathways. In: Shenk, T.E., Stinski, M.F. (eds) Human Cytomegalovirus. Current Topics in Microbiology and Immunology, vol 325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77349-8_14

Download citation

Publish with us

Policies and ethics