Skip to main content

Bone Metastases 2: Pelvis and Appendicular Skeleton

  • Chapter
Imaging of Bone Tumors and Tumor-Like Lesions

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Key Points

• Metastatic bone disease is the commonest bone malignancy in the adult ≥40 years of age.

• The occurrence of bone metastases is a sign of poor prognosis, and major complications due to bone metastases are common and include hypercalcaemia and pathological fracture.

• Fracture risk can be assessed utilising clinical criteria and radiographs using the Mirels score.

• Bone lesions, especially if solitary, cannot be assumed to be metastases even in patients with a known primary malignancy.

• Biopsies should be performed in a dedicated bone tumour centre.

• The main aim of all treatments must be to relieve pain and restore function; patient management benefits from a multidisciplinary approach.

• Follow-up imaging after treatment is challenging for the radiologist and requires detailed knowledge about the treatment and possible outcomes and complications.

• Bone metastases can occur within any bone in any location.

• The morphology of bone metastases is extremely varied and unspecific; in many cases histological confirmation is indicated.

• Radiographs are relatively insensitive and unspecific but still a valuable first-line investigation for focal pain.

• Bone scintigraphy is a simple and inexpensive screening test for bone metastases, but specificity and less so sensitivity are limited.

• PET–CT and whole-body MRI offer good sensitivity and specificity but are expensive and not universally available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe K, Sasaki M et al. (2005) Comparison of 18FDG-PET with 99mTc-HMDP scintigraphy for the detection of bone metastases in patients with breast cancer. Ann Nucl Med 19(7):573–579

    Article  PubMed  Google Scholar 

  • Beheshti M, Vali R et al. (2008) Detection of bone metastases in patients with prostate cancer by F-18 fluorocholine and F-18 fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging [Epub ahead of print]

    Google Scholar 

  • Berrettoni BA, Carter JR (1986) Mechanisms of cancer metastasis to bone. J Bone Joint Surg Am 68(2):308–312

    PubMed  CAS  Google Scholar 

  • Chen YW, Huang MY et al. (2007) Discordant findings of skeletal metastasis between tc 99M MDP bone scans and F18 FDG PET/CT imaging for advanced breast and lung cancers: two case reports and literature review. Kaohsiung J Med Sci 23(12):639–646

    Article  PubMed  Google Scholar 

  • Coerkamp EG, Kroon HM (1988) Cortical bone metastases. Radiology 169(2):525–528

    PubMed  CAS  Google Scholar 

  • Coleman RE (2004) Bisphosphonates: clinical experience. Oncologist 9 (Suppl 4):14–27

    Article  PubMed  CAS  Google Scholar 

  • Cotten A, Deprez X et al. (1995) Malignant acetabular osteolyses: percutaneous injection of acrylic bone cement. Radiology 197(1):307–310

    PubMed  CAS  Google Scholar 

  • Cotten A, Demondion X et al. (1999) Therapeutic percutaneous injections in the treatment of malignant acetabular osteolyses. Radiographics 19(3):647–653

    PubMed  CAS  Google Scholar 

  • Diederich S, Padge B et al. (2006) Application of a single needle type for all image-guided biopsies:results of 100 consecutive core biopsies in various organs using a novel tri-axial, end-cut needle. Cancer Imaging 6:43–50

    Article  PubMed  CAS  Google Scholar 

  • Du Y, Cullum I et al. (2007) Fusion of metabolic function and morphology:sequential [18F]fluorodeoxyglucose positron-emission tomography/computed tomography studies yield new insights into the natural history of bone metastases in breast cancer. J Clin Oncol 25(23):3440–3447

    Article  PubMed  Google Scholar 

  • Espinosa LA, Jamadar DA et al. (2008) CT-guided biopsy of bone: a radiologist’s perspective. Am J Roentgenol 190(5):W283–W289

    Article  Google Scholar 

  • Evans AR, Bottros J et al. (2008) Mirels’ rating for humerus lesions is both reproducible and valid. Clin Orthop Relat Res 466(6):1279–1284

    Article  PubMed  Google Scholar 

  • Even-Sapir E (2005) Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med 46(8):1356–1367

    PubMed  Google Scholar 

  • Even-Sapir E, Metser U et al. (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 47(2):287–297

    PubMed  Google Scholar 

  • Fujimoto R, Higashi T et al. (2006) Diagnostic accuracy of bone metastases detection in cancer patients: comparison between bone scintigraphy and whole-body FDG-PET. Ann Nucl Med 20(6):399–408

    Article  PubMed  Google Scholar 

  • Fukuda Y, Ando K et al. (2006) Superparamagnetic iron oxide (SPIO) MRI contrast agent for bone marrow imaging: differentiating bone metastasis and osteomyelitis. Magn Reson Med Sci 5(4):191–196

    Article  PubMed  CAS  Google Scholar 

  • Hamaoka T, Madewell JE et al. (2004) Bone imaging in metastatic breast cancer. J Clin Oncol 22(14):2942–2953

    Article  PubMed  Google Scholar 

  • Harish S, Hughes RJ et al. (2006) Image-guided percutaneous biopsy of intramedullary lytic bone lesions: utility of aspirated blood clots. Eur Radiol 16(9):2120–2125

    Article  PubMed  Google Scholar 

  • Hendrix RW, Rogers LF et al. (1991) Cortical bone metastases. Radiology 181(2):409–413

    PubMed  CAS  Google Scholar 

  • Hodge JC (2000) Cementoplasty and the oncologic population. Singapore Med J 41(8):407–409

    PubMed  CAS  Google Scholar 

  • Hricak H, Choyke PL et al. (2007) Imaging prostate cancer: a multidisciplinary perspective. Radiology 243(1):28–53

    Article  PubMed  Google Scholar 

  • Inoue T, Yoshinaga K et al. (2007) Whole-body iodine-131 metaiodobenzylguanidine imaging for detection of bone metastases in patients with paraganglioma: comparison with bone scintigraphy. Ann Nucl Med 21(5):307–310

    Article  PubMed  Google Scholar 

  • Ketelsen D, Rothke M et al. (2008) Detection of bone metastasis of prostate cancer: comparison of whole-body MRI and bone scintigraphy. Rofo 180(8):746–752 [in German]

    PubMed  CAS  Google Scholar 

  • Kumar J, Seith A et al. (2008) Whole-body MR imaging with the use of parallel imaging for detection of skeletal metastases in pediatric patients with small-cell neoplasms: comparison with skeletal scintigraphy and FDG PET/CT. Pediatr Radiol 38(9):953–962

    Article  PubMed  Google Scholar 

  • Lecouvet F, Geukens ED et al. (2007) Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high-risk prostate cancer: diagnostic and cost-effectiveness and comparison with current detection strategies. J Clin Oncol 25(22):3281–3287

    Article  PubMed  Google Scholar 

  • Liu PT, Valadez SD et al. (2007) Anatomically based guidelines for core needle biopsy of bone tumors: implications for limb-sparing surgery. Radiographics 27(1):189–206

    Article  PubMed  Google Scholar 

  • Macklis R, Cornelli MH et al. (1998) Brief courses of palliative radiotherapy for metastatic bone pain: a pilot cost-minimization comparison with narcotic analgesics. Am J Clin Oncol 21(6):617–622

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Zapata MJ, Roque M et al. (2006) Calcitonin for metastatic bone pain. Cochrane Database Syst Rev 3:CD003223

    PubMed  CAS  Google Scholar 

  • Michaeli DA, Inoue K et al. (1999) Density predicts the activity-dependent failure load of proximal femora with defects. Skeletal Radiol 28(2):90–95

    Article  PubMed  CAS  Google Scholar 

  • Mirels H (1989) Metastatic disease in long bones. A proposed scoring system for diagnosing impending pathologic fractures. Clin Orthop Relat Res(249):256–264

    Google Scholar 

  • Miric A, Banks M et al. (1998) Cortical metastatic lesions of the appendicular skeleton from tumors of known primary origin. J Surg Oncol 67(4):255–260

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Kusuzaki K et al. (2003) Case report: recurrence of soft tissue MFH in bone due to minute intravenous tumor emboli detected by MRI. Oncol Rep 10(6):1957–1960

    PubMed  Google Scholar 

  • Nakanishi K, Kobayashi M et al. (2007) Whole-body MRI for detecting metastatic bone tumor: diagnostic value of diffusion-weighted images. Magn Reson Med Sci 6(3):147–155

    Article  PubMed  Google Scholar 

  • Nakatsuka A, Yamakado K et al. (2004) Radiofrequency ablation combined with bone cement injection for the treatment of bone malignancies. J Vasc Interv Radiol 15(7):707–712

    PubMed  Google Scholar 

  • Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350(16):1655–1664

    Article  PubMed  CAS  Google Scholar 

  • Ross J, Saunders RY et al. (2003) Systematic review of role of bisphosphonates on skeletal morbidity in metastatic cancer. Br Med J 327(7413):469

    Article  CAS  Google Scholar 

  • Schmidt GP, Kramer H et al. (2007a) Whole-body magnetic resonance imaging and positron emission tomography–computed tomography in oncology. Top Magn Reson Imaging 18(3):193–202

    Article  Google Scholar 

  • Schmidt GP, Schoenberg SO et al. (2007b) Screening for bone metastases: whole-body MRI using a 32-channel system versus dual-modality PET–CT. Eur Radiol 17(4):939–949

    Article  Google Scholar 

  • Specht JM, Tam SL et al. (2007) Serial 2-[18F] fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) to monitor treatment of bone-dominant metastatic breast cancer predicts time to progression (TTP). Breast Cancer Res Treat 105(1):87–94

    Article  PubMed  Google Scholar 

  • Spencer JA (2008) Indeterminate lesions in cancer imaging. Clin Radiol 63(8):843–852

    Article  PubMed  CAS  Google Scholar 

  • Stattaus J, Hahn S et al. (2008) Osteoblastic response as a healing reaction to chemotherapy mimicking progressive disease in patients with small cell lung cancer. Eur Radiol [Epub ahead of print]

    Google Scholar 

  • Taira AV, Herfkens RJ et al. (2007) Detection of bone metastases: assessment of integrated FDG PET/CT imaging. Radiology 243(1):204–211

    Article  PubMed  Google Scholar 

  • Taoka T, Mayr NA et al. (2001) Factors influencing visualization of vertebral metastases on MR imaging versus bone scintigraphy. Am J Roentgenol 176(6):1525–1530

    CAS  Google Scholar 

  • Tillman R, Jane M et al. (2002) Metastatic bone disease: a guide to good practice. British Orthopaedic Association, UK

    Google Scholar 

  • Vanel D, Bonvalot S et al. (2007) Imatimid-induced bone marrow necrosis detected on MRI examination and mimicking bone metastases. Skeletal Radiol 36(9):895–898

    Article  PubMed  CAS  Google Scholar 

  • Wu JS, Goldsmith JD et al. (2008) Bone and soft-tissue lesions: What factors affect diagnostic yield of image-guided core-needle biopsy? Radiology 248(3):962–970

    Article  PubMed  Google Scholar 

  • Yilmaz MH, Ozguroglu M et al. (2008) Diagnostic value of magnetic resonance imaging and scintigraphy in patients with metastatic breast cancer of the axial skeleton: a comparative study. Med Oncol 25(3):257–263

    Article  PubMed  Google Scholar 

  • Yuh WT, Quets JP et al. (1996) Anatomic distribution of metastases in the vertebral body and modes of hematogenous spread. Spine 21(19):2243–2250

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tins, B., Lalam, R., Cassar-Pullicino, V., Tyrrell, P. (2009). Bone Metastases 2: Pelvis and Appendicular Skeleton. In: Davies, A., Sundaram, M., James, S. (eds) Imaging of Bone Tumors and Tumor-Like Lesions. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77984-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77984-1_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77982-7

  • Online ISBN: 978-3-540-77984-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics