Skip to main content

Unser Planetensystem

  • Chapter
  • First Online:
Mineralogie

Part of the book series: Springer-Lehrbuch ((SLB))

  • 6832 Accesses

Zusammenfassung

Nach ihrer Entfernung von der Sonne, ihrer Größe, Masse und Dichte sowie ihrem inneren Aufbau gliedern sich die Planeten unseres Sonnensystems in vier unterschiedliche Gruppen (Abb. 30.1, Tabelle 30.1):

†Deceased

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Weiterführende Literatur

Lehrbücher und Sammelbände

  • Beatty JK, Petersen CC, Chaikin A (eds) (1999) The new solar system. Cambridge Univ Press, Cambridge, UK

    Google Scholar 

  • Chapman CR (1999) Asteroids. In: Beatty JK, Petersen CC, Chaikin A (eds) The new solar system. Cambridge University Press, Cambridge UK, pp 337–350

    Google Scholar 

  • Davis AM (ed) (2005) Meteorites, comets, and planets. Elsevier, Amsterdam Oxford

    Google Scholar 

  • Faure G, Mensing TM (2007) Introduction to planetary science – The geological perspective. Springer-Verlag, Dordrecht, Niederlande

    Google Scholar 

  • Hartmann WK (2005) Moons and planets, 5thed. Brooks/Cole, Belmont, California

    Google Scholar 

  • Hunt GE,Moore P (1982) The planet Venus. Faber and Faber, London

    Google Scholar 

  • Papike JJ (ed) (1998) Planetary materials. Rev Mineral 36

    Google Scholar 

  • Rollinson H (2007) Early Earth systems – A geochemical approach. Blackwell, Malden, Ma, USA

    Google Scholar 

  • Unsöld A, Baschek B (2005) Der neue Kosmos, 7. Aufl. Korrigierter Nachdruck, Springer, Berlin Heidelberg New York

    Google Scholar 

Übersichtsartikel

  • Burns JA (1999) Planetary rings. In: Beatty JK, Petersen CC, Chaikin A (eds) The new solar system. Cambridge University Press, Cambridge UK, pp 221–240

    Google Scholar 

  • Carr MH (1999) Mars. In: Beatty JK, Petersen CC, Chaikin A (eds) The new solar system. Cambridge University Press, Cambridge UK, pp 141–156

    Google Scholar 

  • Chambers JE (2005) Planet formation. In: Davis AM (ed) Meteorites, comets, and planets. Elsevier, Amsterdam Oxford, pp 461–474

    Google Scholar 

  • Cruikshank DP (1999) Triton, Pluto, and Charon. In: Beatty JK, Petersen CC, Chaikin A (eds) The new solar system. Cambridge Univ Press, Cambridge, UK, pp 285–296

    Google Scholar 

  • Fegley B Jr (2005) Venus. In: Davis AM (ed) Meteorites, comets, and planets. Elsevier, Amsterdam Oxford, pp 487–507

    Google Scholar 

  • Fiquet G, Guyot F, Badro J (2008) The Earth’s lower mantle and core. Elements 4:177–182

    Article  Google Scholar 

  • Greeley R (1999) Europa. In: Beatty JK, Petersen CC, Chaikin A (eds) The new solar system. Cambridge Univ Press, Cambridge, pp 253–262

    Google Scholar 

  • Hartmann WK (1999) Small worlds: Patterns and relationships. In: Beatty JK, Petersen CC, Chaikin A (eds) The new solar system. Cambridge Univ Press, Cambridge, UK, pp 311–320

    Google Scholar 

  • Head JW III (1999) Surfaces and interiors of the terrestrial planets. In: Beatty JK, Petersen CC, Chaikin A (eds) The new solar system. Cambridge Univ Press, Cambridge, UK, pp 157–173

    Google Scholar 

  • Hubbard WB (1999) Interior of the giant planets. In: Beatty JK, Petersen CC, Chaikin A (eds) The new solar system. Cambridge Univ Press, Cambridge, UK, pp 193–200

    Google Scholar 

  • Jakosky BM (1999) Atmospheres of the terrestrial planets. In: Beatty JK, Petersen CC, Chaikin A (eds) The new solar system. Cambridge Univ Press, Cambridge, UK, pp 175–191

    Google Scholar 

  • Johnson TV (1999) Io. In: Beatty JK, Petersen CC, Chaikin A (eds) The new solar system. Cambridge Univ Press, Cambridge, UK, pp 241–252

    Google Scholar 

  • Johnson TV (2005) Major satelites of the giant planets. In: Davis AM (ed) Meteorites, comets, and planets. Elsevier,Amsterdam Oxford, pp 637–662

    Google Scholar 

  • Lunine JI (2005) Giant planets. In: Davis AM (ed) Meteorites, comets and planets. Elsevier Amsterdam Oxford, pp 623–636

    Google Scholar 

  • McKinnon WB (1999) Midsize icy satellites. In: Beatty JK, Petersen CC, Chaikin A (eds) The new solar system. Cambridge Univ Press, Cambridge, UK, pp 297–310

    Google Scholar 

  • McSween HY Jr (2005) Mars. In: Davis AM (ed) Meteorites, comets and planets. Elsevier Amsterdam Oxford, pp 601–621

    Google Scholar 

  • Owen T (1999) In: Beatty JK, Petersen CC, Chaikin A (eds) The new solar system. Cambridge Univ Press, Cambridge, UK, pp 277–284

    Google Scholar 

  • Pappalardo RT (1999) Ganymede and Callisto. In: Beatty JK, Petersen CC, Chaikin A (eds) The new solar system. Cambridge Univ Press, Cambridge, UK, pp 263–275

    Google Scholar 

  • Saunders RS (1999) Venus. In: Beatty JK, Petersen CC, Chaikin A (eds) The new solar system. Cambridge Univ Press, Cambridge, UK, pp 97–110

    Google Scholar 

  • Shaw GH (2008) Earth’s atmosphere – Hadean to early Proterozoic. Chem Erde 68:235–264

    Article  Google Scholar 

  • Spohn T, Sohl F,Wieczerkowski K, Conzelmann V (2001) The interior structure of Mercury: What we know, what we expect from BepiColombo. Planet Space Sci 49:1561–1570

    Article  Google Scholar 

  • Taylor GJ, Scott ERD (2005) Mercury. In: Davis AM (ed) Meteorites, comets, and planets. Elsevier, Amsterdam Oxford, pp 477–485

    Google Scholar 

  • Wänke H, Dreibus G (1988) Chemical composition and accretion history of the terrestrial planets. Phil Trans Roy Soc London A325:545–557

    Article  Google Scholar 

  • Zolenski ME (2005) Extraterrestrial water. Elements 1:39–43

    Article  Google Scholar 

Zitierte Literatur

  • Agnor CB, Hamilton DP (2006) Neptune’s capture of its moon Triton in a binary-planet gravitational encounter. Nature 221:192–194

    Article  Google Scholar 

  • Bertka CM, Fei Y (1997) Mineralogy of the martian interior up to core-mantle pressures. J Geophys Res 102:5251–5264

    Article  Google Scholar 

  • Borg LE, Edmunson J, Asmerom Y (2005) Constraints on the U-Pb systematics of Mars inferred from a combined U-Pb, Rb-Sr, and Sm-Nd isotopic study of the Martian meteorite Zagami. Geochim Cosmochim Acta 69:5819–5830

    Article  Google Scholar 

  • Campbell DB, Chandler JF, Hine A, Nolan M, Campbell PP (2003) Radar imaging of the lunar poles. Nature 426:137–138

    Article  Google Scholar 

  • Fagan TJ, Krot AN, Keil K, Yurimoto H (2004) Oxygen isotopic evolution of amoeboid olivine aggregates in the reduced CV chondrites Efremovka, Vigarano and Leoville. Geochim Cosmochim Acta 68:2591–2611

    Article  Google Scholar 

  • Feldmann WC, Maurice S, Binder AB, Barraclough BL, Elphic RC, Lawrence DJ (1998) Fluxes of fast and epithermal neutrons from Lunar Prospector: Evidence for water ice at the Lunar poles. Science 281:1496–1500

    Article  Google Scholar 

  • Hartmann WK, Neukum G (2001) Cratering chronology and the evolution of Mars. Space Sci Rev 96:165–194

    Article  Google Scholar 

  • Kiess CC, Corliss CH, Kiess KH (1960) High-dispersion spectra of Jupiter. Astrophys J 132:221–231

    Article  Google Scholar 

  • Lodders K, Fegley B Jr (1998) An oxygen isotope model for the composition of Mars. Icarus 126:373–394

    Article  Google Scholar 

  • Mayor M, Queloz D (1995) A Jupiter-mass companion to a solar-type star. Nature 378:355–359

    Article  Google Scholar 

  • Neukum G, Ivanov BA, Hartmann WK (2001) Cratering records in the inner solar system in relation to the lunar reference system. Space Sci Rev 96:55–86

    Article  Google Scholar 

  • Potter A, Morgan TH (1985) Discovery of sodium in the Atmosphere of Mercury. Science 229:651–653

    Article  Google Scholar 

  • PotterA,Morgan TH (1986) Potassium in the Atmosphere of Mercury. Icarus 67:336–340

    Article  Google Scholar 

  • Rieder R, Economou T, Wänke H, Turkevich H, Crisp J, Brückner J, Dreibus G, McSween HJ (1997) The chemical composition of martian soil and rocks returned from the mobile Alpha Proton X-ray spectrometer: Preliminary results from the X-ray mode. Science 278:1771–1774

    Article  Google Scholar 

  • Slade MA, Butler BJ, Muhlman DO (1992) Mercury radar imaging: Evidence for ice. Science 258:635–640

    Article  Google Scholar 

  • Tanaka KL (1986) The stratigraphy of mars. Proc 171t Lunar Planet Sci Conf, J Geophys Res 91, suppl, pp 139–158

    Google Scholar 

  • Wänke H, Brückner J, Dreibus G, Rieder R, Ryabchikov I (2001) Chemical composition of rocks and soils at the Pathfinder site. Space Sci Rev 96:317–330

    Article  Google Scholar 

  • Wildt R (1932) Absorptionsspektren und Atmosphären der großen Planeten. Veröff Univ Sternwarte Göttingen 2:171–180

    Google Scholar 

  • Wolszczan A, Frail (1992) A planetary system around millisecond pulsar PSR1257+12. Nature 355:145–147

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Okrusch, M., Matthes †, S. (2010). Unser Planetensystem. In: Mineralogie. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78201-8_30

Download citation

Publish with us

Policies and ethics