Skip to main content

Anomalous Behaviour of Supercooled Water and Its Implication for Protein Dynamics

  • Chapter
Aspects of Physical Biology

Part of the book series: Lecture Notes in Physics ((LNP,volume 752))

Abstract

Water is the foundation of life, and without it life as we know it would not exist. An organism consists to a large extent of water and, apart from a few larger reservoirs, almost all water in a living organism is closely associated with surfaces of biomolecules of different kinds. This so-called biological water is known to affect the dynamics of biomaterials such as proteins, which in turn is crucial for its functions. However, how and why the surrounding environment affects the dynamics of proteins and other biomolecules is still not fully understood. Recently, it was suggested [Fenimore et al. PNAS 2004, 101 14408] that local and more global protein motions are slaved (or driven) by the local β-relaxation and the more large-scale cooperative α-relaxation in the surrounding solvent, respectively. In this chapter we present results from dielectric measurements on myoglobin in water-glycerol mixtures that support this slaving idea. Moreover, we show how confined supercooled water changes its dynamical behaviour from a low temperature Arrhenius behaviour to a high temperature non-Arrhenius behaviour at a certain temperature (around 200 K), and then we discuss likely explanations for the crossover and its consequence for protein dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Franks, Water: A matrix of life, 2nd ed., 2000, Cambridge: Royal Society of Chemistry.

    Google Scholar 

  2. Mathews, v. Holde, and Ahern, eds., Biochemistry, 3rd ed., 2000, Addison Wesley Longman: San Fransisco.

    Google Scholar 

  3. F. Franks, Water: A comprehensive treatise, ed. F. Franks, Vol. 1, 1972.

    Google Scholar 

  4. S. Zumdahl, ed., Chemical principles, 4th ed., 2002, Houghton Mifflin Company: Boston.

    Google Scholar 

  5. A. L. Lehninges, D. L. Nielsun, and M. M. Cox, eds., Principles of Biochemistry, 2nd ed., 1993, Worth Publishers: New York.

    Google Scholar 

  6. H. E. Stanley, Unsolved mysteries of water in its liquid and glass states. Mrs Bulletin, 1999. 24(5): pp. 22–30.

    Google Scholar 

  7. M. C. Bellissent-Funel, Water near hydrophilic surfaces. Journal of Molecular Liquids, 2002. 96–7: pp. 287–304.

    Article  Google Scholar 

  8. P. Wernet, D. Nordlund, U. Bergmann, M. Cavalleri, M. Odelius, H. Ogasawara, L. A. Nslund, T. K. Hirsch, L. Ojamae, P. Glatzel, L. G. M. Pettersson, and A. Nilsson, The structure of the first coordination shell in liquid water. Science, 2004. 304(5673): pp. 995–999.

    Article  ADS  Google Scholar 

  9. S. R. Elliot, Physics of amorphous materials, 2nd ed., 1990, Longman Scientific andTechnical, UK.

    Google Scholar 

  10. F. Kremer and A. Schönhals, eds. Broadband Dielectric Spectroscopy, 2003, Springer-Verlag.

    Google Scholar 

  11. G. P. Johari, Intrinsic mobility of molecular glasses. Journal of Chemical Physics, 1973. 58(4): pp. 1766–1770.

    Article  ADS  Google Scholar 

  12. H. Vogel, Phys. Z, 1921. 22(645).

    Google Scholar 

  13. G. S. Fulcher, Journal of American Ceramic Society, 1925. 8(789).

    Google Scholar 

  14. G. Tammann and G. Hesse, Zeitschrift fur Anorganische und Allgemeine Chemie, 1926. 156(245).

    Google Scholar 

  15. C. A. Angell, Formation of glasses from liquids and biopolymers. Science, 1995. 267(5206): pp. 1924–1935.

    Article  ADS  Google Scholar 

  16. C. A. Angell, Relaxation in liquids, polymers and plastic crystals - strong fragile patterns and problems. Journal of Non-Crystalline Solids, 1991. 131: pp. 13–31.

    Article  ADS  Google Scholar 

  17. G. P. Johari, A. Hallbrucker, and E. Mayer, The glass liquid transition of hyperquenched water. Nature, 1987. 330(6148): pp. 552–553.

    Article  ADS  Google Scholar 

  18. A. Hallbrucker, E. Mayer, and G. P. Johari, Glass-liquid transition and the enthalpy of devitrification of annealed vapor-deposited amorphous solid water – A comparison with hyperquenched glassy water. Journal of Physical Chemistry, 1989. 93(12): pp. 4986–4990.

    Article  Google Scholar 

  19. C. A. Angell, Liquid fragility and the glass transition in water and aqueous solutions. Chemical Reviews, 2002. 102(8): pp. 2627–2649.

    Article  Google Scholar 

  20. V. Velikov, S. Borick, and C. A. Angell, The glass transition of water, based on hyperquenching experiments. Science, 2001. 294(5550): pp. 2335–2338.

    Article  ADS  Google Scholar 

  21. S. Cerveny, G. A. Schwartz, R. Bergman, and J. Swenson, Glass transition and relaxation processes in supercooled water. Physical Review Letters, 2004. 93: pp. 245702.

    Article  ADS  Google Scholar 

  22. M. Antognozzi, A. D. L. Humphris, and M. J. Miles, Observation of molecular layering in a confined water film and study of the layers viscoelastic properties. Applied Physics Letters, 2001. 78(3): pp. 300–302.

    Article  ADS  Google Scholar 

  23. P. Gallo, M. A. Ricci, and M. Rovere, Layer analysis of the structure of water confined in vycor glass. Journal of Chemical Physics, 2002. 116(1): pp. 342–346.

    Article  ADS  Google Scholar 

  24. M. O. Jensen, O. G. Mouritsen, and G. H. Peters, The hydrophobic effect: Molecular dynamics simulations of water confined between extended hydrophobic and hydrophilic surfaces. Journal of Chemical Physics, 2004. 120(20): pp. 9729–9744.

    Article  ADS  Google Scholar 

  25. S. Takahara, M. Nakano, S. Kittaka, Y. Kuroda, T. Mori, H. Hamano, and T. Yamaguchi, Neutron scattering study on dynamics of water molecules in MCM- 41. Journal of Physical Chemistry B, 1999. 103(28): pp. 5814–5819.

    Article  Google Scholar 

  26. U. Raviv, P. Laurat, and J. Klein, Fluidity of water confined to subnanometre films. Nature, 2001. 413(6851): pp. 51–54.

    Article  ADS  Google Scholar 

  27. M. A. Ricci, F. Bruni, P. Gallo, M. Rovere, and A. K. Soper, Water in confined geometries: Experiments and simulations. Journal of Physics-Condensed Matter, 2000. 12(8A):pp. A345–A350.

    Article  ADS  Google Scholar 

  28. M. Rovere and P. Gallo, Effects of confinement on static and dynamical properties of water. European Physical Journal E, 2003. 12(1): pp. 77–81.

    Article  ADS  Google Scholar 

  29. P. Pissis, J. Laudat, D. Daoukaki, and A. Kyritsis, Dynamic properties of water in porous vycor glass studied by dielectric techniques. Journal of Non-Crystalline Solids, 1994. 171(2): pp. 201–207.

    Article  ADS  Google Scholar 

  30. J. Swenson, R. Bergman, and S. Longeville, A neutron spin-echo study of confined water. Journal of Chemical Physics, 2001. 115(24): pp. 11299–11305.

    Article  ADS  Google Scholar 

  31. A. Faraone, L. Liu, C. Y. Mou, C. W. Yen, and S. H. Chen, Fragile-to-strong liquid transition in deeply supercooled confined water. Journal of Chemical Physics, 2004. 121(22):pp. 10843–10846.

    Article  ADS  Google Scholar 

  32. E. Mamontov, Observation of fragile-to-strong liquid transition in surface water in CeO2. Journal of Chemical Physics, 2005. 123(17): pp. 171101.

    Article  ADS  Google Scholar 

  33. K. Ito, C. T. Moynihan, and C. A. Angell, Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water. Nature, 1999. 398(6727): pp. 492–495.

    Article  ADS  Google Scholar 

  34. J. Swenson, H. Jansson, and R. Bergman, Relaxation processes in supercooled confined water and implications for protein dynamics. Physical Review Letters, 2006. 96(24): pp. 247802.

    Article  ADS  Google Scholar 

  35. H. D. Middendorf, Neutron studies of the dynamics of biological water. Physica B, 1996. 226(1–3): pp. 113–127.

    Article  ADS  Google Scholar 

  36. N. Nandi and B. Bagchi, Dielectric relaxation of biological water. Journal of Physical Chemistry B, 1997. 101(50): pp. 10954–10961.

    Article  Google Scholar 

  37. V. P. Denisov and B. Halle, Protein hydration dynamics in aqueous solution. Faraday Discussions, 1996(103): pp. 227–244.

    Google Scholar 

  38. P. Gallo, M. Rovere, and E. Spohr, Supercooled confined water and the mode coupling crossover temperature. Physical Review Letters, 2000. 85(20): pp. 4317–4320.

    Article  ADS  Google Scholar 

  39. S. Dellerue and M. C. Bellissent-Funel, Relaxational dynamics of water molecules at protein surface. Chemical Physics, 2000. 258(2–3): pp. 315–325.

    Article  ADS  Google Scholar 

  40. M. Marchi, F. Sterpone, and M. Ceccarelli, Water rotational relaxation and diffusion in hydrated lysozyme. Journal of the American Chemical Society, 2002. 124(23): pp. 6787–6791.

    Article  Google Scholar 

  41. M. Tarek and D. J. Tobias, Role of protein-water hydrogen bond dynamics in the protein dynamical transition. Physical Review Letters, 2002. 88(13): 138101.

    Article  ADS  Google Scholar 

  42. A. L. Tournier, J. C. Xu, and J. C. Smith, Translational hydration water dynamics drives the protein glass transition. Biophysical Journal, 2003. 85(3): pp. 1871–1875.

    Article  ADS  Google Scholar 

  43. J. A. Rupley and G. Careri, Protein hydration and function. Advances in Protein Chemistry, 1991. 41: pp. 37–172.

    Article  Google Scholar 

  44. J. A. Rupley, P. H. Yang, and G. Tollin, In water in polymers, S. P. Rowland, ed., 1980, American Chemical Society: Washington D.C.

    Google Scholar 

  45. R. Pethig, Protein-water interactions determined by dielectric methods. Annual Review of Physical Chemistry, 1992. 43: pp. 177–205.

    Article  ADS  Google Scholar 

  46. P. W. Fenimore, H. Frauenfelder, B. H. McMahon, and R. D. Young, Bulk-solvent and hydration-shell fluctuations, similar to α- and β-fluctuations in glasses, control protein motions and functions. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(40): pp. 14408–14413.

    Google Scholar 

  47. S. Cerveny, J. Mattsson, J. Swenson, and R. Bergman, Relaxations of hydrogen-bonded liquids confined in two-dimensional vermiculite clay. Journal of Physical Chemistry B, 2004. 108(31): pp. 11596–11603.

    Article  Google Scholar 

  48. S. N. Bhat, A. Sharma, and S. V. Bhat, Vitrification and glass transition of water: Insights from spin probe ESR. Physical Review Letters, 2005. 95(23): 235702.

    Google Scholar 

  49. R. Bergman and J. Swenson, Dynamics of supercooled water in confined geometry. Nature, 2000. 403(6767): pp. 283–286.

    Article  ADS  Google Scholar 

  50. J. Swenson, H. Jansson, W. S. Howells, and S. Longeville, Dynamics of water in a molecular sieve by quasielastic neutron scattering. Journal of Chemical Physics, 2005. 122(8): p. 084505.

    Article  ADS  Google Scholar 

  51. H. Jansson and J. Swenson, Dynamics of water in molecular sieves by dielectric spectroscopy. European Physical Journal E, 2003. 12: pp. S51–S54.

    Article  Google Scholar 

  52. H. Jansson, R. Bergman, and J. Swenson, Relation between solvent and protein dynamics as studied by dielectric spectroscopy. Journal of Physical Chemistry B, 2005. 109(50): pp. 24134–24141.

    Article  Google Scholar 

  53. R. Bergman, J. Mattsson, C. Svanberg, G. A. Schwartz, and J. Swenson, Confinement effects on the excess wing in the dielectric loss of glass-formers. Europhysics Letters, 2003. 64(5): pp. 675–681.

    Article  ADS  Google Scholar 

  54. J. Swenson, G. A. Schwartz, R. Bergman, and W. S. Howells, Dynamics of propylene glycol and its oligomers confined in clay. European Physical Journal E, 2003. 12(1): pp. 179–183.

    Article  ADS  Google Scholar 

  55. J. Hedström, J. Swenson, R. Bergman, H. Jansson, and S. Kittaka, European Physical Journal, “Special Topics”, 2007. 141: pp. 53–56.

    Article  Google Scholar 

  56. R. Bergman, J. Swenson, L. Börjesson, and P. Jacobsson, Dielectric study of supercooled 2D water in a vermiculite clay. Journal of Chemical Physics, 2000. 113(1): pp. 357–363.

    Article  ADS  Google Scholar 

  57. G. Sartor, A. Hallbrucker, K. Hofer, and E. Mayer, Calorimetric glass liquid transition and crystallization behavior of a vitreous, but freezable, water fraction in hydrated methemoglobin. Journal of Physical Chemistry, 1992. 96(12): pp. 5133–5138.

    Article  Google Scholar 

  58. J. Swenson, H. Jansson, J. Hedström, and R. Bergman, Properties of hydration water and its role for protein dynamics. Journal of Physics: Condensed matter, 2007. 19(20): 205109.

    Article  ADS  Google Scholar 

  59. L. Liu, S. H. Chen, A. Faraone, C. W. Yen, and C. Y. Mou, Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water. Physical Review Letters, 2005. 95(11): 117802.

    Article  ADS  Google Scholar 

  60. S. H. Chen, L. Liu, E. Fratini, A. Faraone, and E. Mamontov, Observation of fragile-to-strong dynamic crossover in protein hydration water. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(24): pp. 9012–9016.

    Google Scholar 

  61. F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, U. Wanderlingh, L. Liu, C. Y. Mou, and S. H. Chen, The fragile-to-strong dynamic crossover transition in confined water: Nuclear magnetic resonance results. Journal of Chemical Physics, 2006. 124(16): 161102.

    Article  ADS  Google Scholar 

  62. L. Onsager and L. K. Runnels, Diffusion and relaxation phenomena in ice. Journal of Chemical Physics, 1969. 50(3): pp. 1089–1103.

    Article  ADS  Google Scholar 

  63. K. Goto, T. Hondoh, and A. Higashi, Determination of diffusion coefficients of self-interstitials in ice with a new method of observing climb of dislocations by x-ray topography. Japanese Journal of Applied Physics, 25: pp. 351–357.

    Google Scholar 

  64. P. W. Fenimore, H. Frauenfelder, B. H. McMahon, and F. G. Parak, Slaving: Solvent fluctuations dominate protein dynamics and functions. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(25): pp. 16047–16051.

    Google Scholar 

  65. D. Vitkup, D. Ringe, G. A. Petsko, and M. Karplus, Solvent mobility and the protein ‘glass’ transition. Nature Structural Biology, 2000. 7(1): pp. 34–38.

    Article  Google Scholar 

  66. W. Doster and M. Settles, Protein-water displacement distributions. Biochimica Et Biophysica Acta-Proteins and Proteomics, 2005. 1749(2): pp. 173–186.

    Article  Google Scholar 

  67. L. K. H. van Beek, Progress in dielectrics, ed. Heywood B. Birks, Vol. 7, 1967, London, pp. 69–114.

    Google Scholar 

  68. S. Bone, Time-domain reflectometry studies of water binding and structural flexibility in chymotrypsin. Biochimica Et Biophysica Acta, 1987. 916(1): pp. 128–134.

    Article  Google Scholar 

  69. Y. Shibata, A. Kurita, and T. Kushida, Real-time observation of conformational fluctuations in Zn-substituted myoglobin by time-resolved transient hole-burning spectroscopy. Biophysical Journal, 1998. 75(1): pp. 521–527.

    Article  ADS  Google Scholar 

  70. G. Careri, Cooperative charge fluctuations by migrating protons in globular proteins. 1998. Progress in Biophysics and Molecular Biology, 70: pp. 223–249.

    Google Scholar 

  71. M. Ferrand, A. J. Dianoux, W. Petry, and G. Zaccai, Thermal motions and function of bacteriorhodopsin in purple membranes – Effects of temperature and hydration studied by neutron-scattering. Proceedings of the National Academy of Sciences of the United States of America, 1993. 90(20): pp. 9668–9672.

    Google Scholar 

  72. V. Kurkal, R. M. Daniel, J. L. Finney, M. Tehei, R. V. Dunn, and J. C. Smith, Low frequency enzyme dynamics as a function of temperature and hydration: A neutron scattering study. Chemical Physics, 2005. 317(2–3): pp. 267–273.

    Article  ADS  Google Scholar 

  73. J. H. Roh, V. N. Novikov, R. B. Gregory, J. E. Curtis, Z. Chowdhuri, and A. P. Sokolov, Onsets of anharmonicity in protein dynamics. Physical Review Letters, 2005. 95(3): p. 038101.

    Article  ADS  Google Scholar 

  74. H. Lichtenegger, W. Doster, T. Kleinert, A. Birk, B. Sepiol, and G. Vogl, Heme-solvent coupling: A Mossbauer study of myoglobin in sucrose. Biophysical Journal, 1999. 76(1):pp. 414–422.

    Article  ADS  Google Scholar 

  75. F. G. Parak, Proteins in action: The physics of structural fluctuations and conformational changes. Current Opinion in Structural Biology, 2003. 13(5): pp. 552–557.

    Article  Google Scholar 

  76. A. Huenges, K. Achterhold, and F. G. Parak, Mössbauer spectroscopy in the energy and in the time domain, a crucial tool for the investigation of protein dynamics. Hyperfine Interactions, 2002. 144(1): pp. 209–222.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Swenson, J., Jansson, H., Bergman, R. (2009). Anomalous Behaviour of Supercooled Water and Its Implication for Protein Dynamics. In: Franzese, G., Rubi, M. (eds) Aspects of Physical Biology. Lecture Notes in Physics, vol 752. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78765-5_2

Download citation

Publish with us

Policies and ethics