Skip to main content

Forest Stand Volume of Sitka Spruce Plantations in Britain: Can Existing Laser Scanning Methods Based on the Conventional One Provide Better Results, a Comparison of Two Approaches

  • Chapter
The European Information Society

Abstract

This paper looks at different datasets obtained from an airborne Light Detection And Ranging (LiDAR) system and compares the reliability of two contemporary analysis approaches. Estimates of different stand parameters, such as top tree height, were derived using regression analysis and a segmentation approach on data obtained from small-footprint laser scan were contrasted with the field measurements in 7 plots, specifically volume and basal area. Plots of 2,500m2 containing plantations of Sitka spruce (Picea sitchensis Bong. Carr.) were scanned with two different point densities in years 2003 and 2004. These plots were divided into training and test regions of 625 m2 each. Regression analysis was performed using percentiles corresponding to the canopy tree height at different vertical levels and a segmentation method was used to delineate individual tree crowns where tree metrics can be determined. The bias of the estimated values for the stand volume and basal area ranged from 1.21 to 6.49 m3ha-1 (0.17 to 0.92 %) and - 2.69 to 1.23 m2ha-1(- 3.9 to 1.7 %), respectively; and the bias calculated from the segmentation using 0.5 and 1m dataset ranged between - 349.77 to - 434.76 m3ha-1 (- 49.7 to - 61.8 %) for the stand volume and - 33.36 to - 42.24 m2ha-1 (- 48.5 to - 61.4 %) for the basal area. The results showed that the regression models estimated stand volume and basal more accurately compared with values calculated from the segmentation. Furthermore, it is shown that there was no significant difference in the estimates from the regression model when using different point densities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bollandsas, O. M., and E. Naesset. (2007) Estimating percentile-based diameter distributions in uneven-sized Norway spruce stands using airborne laser scanner data. Scandinavian Journal of Forest Research 00022 (00001).

    Google Scholar 

  • Coops, N. C., T. Hilker, M. A. Wulder, B. St-Onge, G. Newnham, A. Siggins, and J. A. Trofymow. (2007) Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR. Trees-Structure and Function 21 (3):295-310.

    Google Scholar 

  • Donoghue, D. N. M., and P. J. Watt. (2006). Using LiDAR to compare forest height estimates from IKONOS and Landsat ETM+ data in Sitka spruce plantation forests. International Journal of Remote Sensing 27 (11):2161-2175.

    Article  Google Scholar 

  • Forestry Statistics 2006. (2006.) [cited December 1 2006]. Available from http://www.forestry.gov.uk/pdf/fcfs206.pdf/FILE/fcfs206.pdf.

    Google Scholar 

  • Gobakken, T., and E. Naesset. (2005). Weibull and percentile models for lidar-based estimation of basal area distribution. Scandinavian Journal of Forest Research 20:490-502.

    Article  Google Scholar 

  • Hamilton, G. J. (1975). Forest mensuration handbook, Forestry Commission booklet ; 39. London: H.M.S.O.

    Google Scholar 

  • Holmgren, J. (2004) Prediction of tree height, basal area and stem volume in fores stands using airborne laser scanning. Scandinavian Journal of Forest Research 19 (6):543-553.

    Article  Google Scholar 

  • Holmgren, J., M. Nilsson, and H. Olsson. (2003) Estimation of Tree Height and Stem Volume on Plots Using Airborne Laser Scanning. Forest Science 49:419-428.

    Google Scholar 

  • Hyyppä, J., M. Engdahl, S. Linko, Y. H. Zhu, H. Hyyppä, and M. Inkinen. (2000) Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes. Forest Ecology and Management 128 (1-2):109-120.

    Article  Google Scholar 

  • Hyyppa, J., O. Kelle, M. Lehikoinen, and M. Inkinen. (2001) A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners. Ieee Transactions on Geoscience and Remote Sensing 39 (5):969-975.

    Article  Google Scholar 

  • Hyyppa, J., T. Mielonen, H. Hyyppa, M. Maltamo, X. Yu, E. Honkavaara, and H. Kaartinen (2005) Using Individual Tree Crown Approach for Forest Volume Extraction with Aerial Images and Laser Point Clouds. Paper read at ISPRS WG III/3, III/4, V/3 Workshop, September 12-14, 2005, at Enschede, the Netherlands.

    Google Scholar 

  • Lim, K., M. Flood, P. Treitz, M. Wulder, and B. St-Ongé. (2003) LiDAR remote sensing of forest structure. Progress in Physical Geography 27 (1):88-106.

    Article  Google Scholar 

  • Lim, K., P. Treitz, K. Baldwin, I. Morrison, and J. Green (2003) Lidar remote sensing of biophysical properties of tolerant northern hardwood forests. Canadian Journal of Remote Sensing 29 (5):658-678.

    Google Scholar 

  • Maltamo, M., K. Eerikainen, J. Pitkanen, J. Hyyppa, and M. Vehmas. (2004) Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions. Remote Sensing of Environment 90 (3):319-330.

    Article  Google Scholar 

  • Maltamo, M., P. Packalen, X. Yu, K. Eerikainen, J. Hyyppa, and J. Pitkanen. (2005) Identifying and quantifying structural characteristics of heterogeneous boreal forests using laser scanner data. Forest Ecology and Management 216 (1-3):41-50.

    Article  Google Scholar 

  • Maltamo, M., X. Yu, K. Mustonen, J. Hyyppä, and J. Pitkänen. (2004) The accuracy of estimating individual tree variables with airborne laser scanning in a boreal nature reserve. Canadian Journal of Forest Research 34 (9):1791-1801.

    Article  Google Scholar 

  • Means, J. E., L. Emerson, C. J. Hendrix, S. A. Acker, B. J. Fitt, and M. Renslow (2000). Predicting forest stand characteristics with airborne scanning lidar. Photogrammetric Engineering and Remote Sensing 66 (11):1367-1371.

    Google Scholar 

  • Naesset, E. (1997a). Determination of mean tree height of forest stands using airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing 52 (2):49-56.

    Article  Google Scholar 

  • Naesset, E. (1997b). Estimating timber volume of forest stands using airborne laser scanner data. Remote Sensing of Environment 61 (2):246-253.

    Article  Google Scholar 

  • Naesset, E. (2002). Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sensing of Environment 80 (1):88-99.

    Article  Google Scholar 

  • Naesset, E. (2004). Practical large-scale forest stand inventory using a small-footprint airborne scanning laser. Scandinavian Journal of Forest Research 19 (2):164-179.

    Article  Google Scholar 

  • Naesset, E., and K.-O. Bjerknes. (2001). Estimating tree heights and number of stems in young forest stands using airborne laser scanner data. Remote Sensing of Environment 78 (3):328-340.

    Article  Google Scholar 

  • Naesset, E., T. Gobakken, J. Holmgren, H. Hyyppa, J. Hyyppa, M. Maltamo, M. Nilsson, H. Olsson, A. Persson, and U. Soderman. (2004). Laser scanning of forest resources: The Nordic experience. Scandinavian Journal of Forest Research 19 (6):482-499.

    Article  Google Scholar 

  • Naesset, E., and T. Okland. (2002). Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve. Remote Sensing of Environment 79 (1):105-115.

    Article  Google Scholar 

  • Nelson, R., W. Krabill, and J. Tonelli. (1988). Estimating forest biomass and volume using airborne laser data. Remote Sensing of Environment 24 (2):247-267.

    Article  Google Scholar 

  • Nilsson, M. 1996. Estimation of tree heights and stand volume using an airborne lidar system. Remote Sensing of Environment 56 (1):1-7.

    Article  Google Scholar 

  • Persson, A., J. Holmgren, and U. Soderman. (2002). Detecting and measuring individual trees using an airborne laser scanner∈dexlaser scanner. Photogrammetric Engineering and Remote Sensing 68 (9):925-932.

    Google Scholar 

  • Peuhkurinen, J., M. Maltamo, J. Malinen, J. Pitkönen, and P. Packalen. forthcoming. Pre-harvest measurement of marked stands using airborne laser scanning. Forest Science.

    Google Scholar 

  • Philip, M. S. (1994) Measuring trees and forests. 2nd ed. Wallingford: CAB International.

    Google Scholar 

  • Pitkönen, J. (2005) A multi-scale method for segmentation of trees in aerial images. In Forest Inventory and Planning in Nordic Countries, Proceedings of SNS Meeting at Sjusjoen, Norway, ed. K. Hobbelstad, 207 - 216: Norwegian Institute of land Inventory.

    Google Scholar 

  • Pitkönen, J., M. Maltamo, J. Hyyppa, and X. Yu. (2004) Adaptive methods for individual tree detection on airborne laser based canopy height model. Laser scanners for forest and landscape assessment. Proceedings of the ISPRS working group VIII/2 XXXVI, part 8/W2:187-191.

    Google Scholar 

  • Suárez, J. C., S. Snape, C. Ontiveros, and S. Smith. (2005) Use of airborne LiDAR and aerial photography in the estimation of individual tree heights in forestry. Computers and Geosciences 31 (2):253-262.

    Article  Google Scholar 

  • Tilley, B. K., I. A. Munn, D. L. Evans, R. C. Parker, and S. D. Roberts. (2007). Cost Considerations of Using LiDAR for Timber Inventory 2004 [cited January 15 2007]. Available from http://sofew.cfr.msstate.edu/papers/0504tilley.pdf.

    Google Scholar 

  • Wehr, A., and U. Lohr. (1999). Airborne laser scanning–an introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing 54 (2-3):68-82.

    Article  Google Scholar 

  • Weinacker, H., Koch, B., Heyder, U., Weinacker, R., (2004) Development of filtering, segmentation and modelling modules for lidar and multispectral data as a fundament of an automatic forest inventory system; In: Proceedings of the international Conference. Laser-Scanners for Forest and Landscape Assessment - Instruments, processing Methods and Applications. Freiburg im Breisgau.Germany.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Petr, M., Patenaude, G., Suárez, J. (2008). Forest Stand Volume of Sitka Spruce Plantations in Britain: Can Existing Laser Scanning Methods Based on the Conventional One Provide Better Results, a Comparison of Two Approaches. In: Bernard, L., Friis-Christensen, A., Pundt, H. (eds) The European Information Society. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78946-8_1

Download citation

Publish with us

Policies and ethics