Skip to main content

Network-Based Inference of Cancer Progression from Microarray Data

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4983))

Included in the following conference series:

Abstract

Cancer cells exhibit a common phenotype of uncontrolled cell growth, but this phenotype may arise from many different combinations of mutations. By inferring how cells evolve in individual tumors, a process called cancer progression, we may be able to identify important mutational events for different tumor types, potentially leading to new therapeutics and diagnostics. Prior work has shown that it is possible to infer frequent progression pathways by using gene expression profiles to estimate “distances” between tumors. Individual mutations can, however, result in large shifts in expression levels, making it difficult to accurately identify evolutionary distance from differences in expression. Here, we apply gene network models in order to improve our ability to estimate evolutionary distances from expression data by controlling for correlations among co-regulated genes. We test two variants of this approach, one using full regulatory networks inferred from a candidate gene set and the other using simplified modular networks inferred from clusters of similarly expressed genes. Application to a set of E2F-responsive genes from a lung cancer microarray data set shows a small improvement in phylogenies when correcting from the full network but a more substantial improvement when correcting from the modular network. These results suggest that a network correction approach can lead to better identification of tumor similarity, but that sophisticated network models are needed to control for the large hypothesis space and sparse data currently available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antoniak, J.R.: Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Annals Stat. 2, 1152–1174 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cormen, T.H., Leiserson, C.A., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  3. Desper, R., Khan, J., Schaffer, A.A.: Tumor classification using phylogenetic methods on expression data. J. Theor. Biol. 228, 477–496 (2004)

    Article  MathSciNet  Google Scholar 

  4. Fang, Z.H., Han, Z.C.: The transcription factor E2F: a crucial switch in the control of homeostasis and tumorigenesis. Histol. Histopathol. 21, 403–413 (2006)

    Google Scholar 

  5. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. J. Comput. Biol. 7, 601–620 (2000)

    Article  Google Scholar 

  6. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeej, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Cligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  7. Jones, M.H., Virtanen, C., Honjoh, D., Miyoshi, T., Satoh, Y., Okumura, S., Nakagawa, K., Nomura, H., Ishikawa, Y.: Two prognostically significant subtypes of high-grade lung neuroenedocrine tumours independent of small-cell and large-cell neuroendocrine carcinomas identified by gene expression profiles. Lancet 363, 775–781 (2004)

    Article  Google Scholar 

  8. Kim, S., Imoto, S., Miyano, S.: Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems 75, 57–65 (2004)

    Article  Google Scholar 

  9. Maere, S., Heymans, K., Kuiper, M.: BiNGO: A Cytoscape plugin to assess overrepresentation of Gene Ontology categories in biological networks. Bioinformatics 21, 3448–3449 (2005)

    Article  Google Scholar 

  10. Murphy, K.: Bayes net toolbox for Matlab (2007), http://www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html

  11. Neal, R.M.: Markov chain sampling methods for Dirichlet process mixture models. J. Comput. Graph. Stat. 9(2), 249–265 (2000)

    Article  MathSciNet  Google Scholar 

  12. Nowell, P.C.: The clonal evolution of tumor cell populations. Science 194, 23–28 (1976)

    Article  Google Scholar 

  13. Perou, C.M., Sorlie, T., Eisen, M.B., van de Rijn, M.M., Jeffrey, S.S., Rees, C.A., Pollack, J.R., Ross, D.T., Johnsen, H., Akslen, L.A., Fluge, O., Pergamenschikov, A., WIlliams, C., Zhu, S.X., Lonning, P.E., Borresen-Dale, A.-L., Brown, P.O., Botstein, D.: Molecular portraits of human breast tumors. Nature 406, 747–752 (2000)

    Article  Google Scholar 

  14. Qin, Z.S.: Clustering microarray gene expression data using weighted Chinese restaurant process. Bioinformatics 22(16), 1988–1997 (2006)

    Article  Google Scholar 

  15. Rasmussen, C.E.: The infinite Gaussian mixture model. In: Solla, S.A., Lean, T.K., Muller, K.-R. (eds.) Advances in Neural Information Processing Systems, vol. 12, pp. 554–560. MIT Press, Cambridge (2000)

    Google Scholar 

  16. Schmidt, M., Niculescu-Mizil, A., Murphy, K.: Learning graphical model structure using L1-regularization paths. In: Proceedings of the 22nd Conference on Artificial Intelligence (AAAI 2007) (2007)

    Google Scholar 

  17. Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D., Friedman, N.: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet. 34(2), 166–176 (2003)

    Article  Google Scholar 

  18. Shackney, S.E., Silverman, J.F.: Molecular evolutionary patterns in breast cancer. Anat. Pathology 10, 278–290 (2003)

    Article  Google Scholar 

  19. Sorlie, T., Perou, C.M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., Hastie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., Thorsen, T., Quist, H., Matese, J.C., Brown, P.O., Botstein, D., Lonning, P.E., Borresen-Dale, A.-L.: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 98, 10869–10874 (2001)

    Article  Google Scholar 

  20. Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J., Church, G.M.: Systematic determination of genetic network architecture. Nature Genet 22, 281–285 (1999)

    Article  Google Scholar 

  21. Teyssier, M., Koller, D.: Ordering-based search: A simple and effective algorithm for learning Bayesian networks. In: Proceedings of the 21th Annual Conference on Uncertainty in Artificial Intelligence (UAI-2005), pp. 584–559 (2005)

    Google Scholar 

  22. Tsantoulis, P.K., Gorgoulis, V.G.: Involvement of E2F transcription factor family in cancer. Eur. J. Cancer 41, 2403–2413 (2005)

    Article  Google Scholar 

  23. van ’t Veer, L., Dai, H., van de Vijver, M., He, Y., Hart, A., Mao, M., Peterse, H., van der Kooy, K., Marton, M., Witteveen, A., Schreiber, G., Kerkhoven, R., Roberts, C., Linsley, P., Bernards, R., Friend, S.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871), 530–536 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ion Măndoiu Raj Sunderraman Alexander Zelikovsky

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Park, Y., Shackney, S., Schwartz, R. (2008). Network-Based Inference of Cancer Progression from Microarray Data. In: Măndoiu, I., Sunderraman, R., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2008. Lecture Notes in Computer Science(), vol 4983. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79450-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79450-9_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79449-3

  • Online ISBN: 978-3-540-79450-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics