Skip to main content

SAT Modulo the Theory of Linear Arithmetic: Exact, Inexact and Commercial Solvers

  • Conference paper
Theory and Applications of Satisfiability Testing – SAT 2008 (SAT 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4996))

Abstract

Many highly sophisticated tools exist for solving linear arithmetic optimization and feasibility problems. Here we analyze why it is difficult to use these tools inside systems for SAT Modulo Theories (SMT) for linear arithmetic: one needs support for disequalities, strict inequalities and, more importantly, for dealing with incorrect results due to the internal use of imprecise floating-point arithmetic. We explain how these problems can be overcome by means of result checking and error recovery policies.

Second, by means of carefully designed experiments with, among other tools, the newest version of ILOG CPLEX and our own new Barcelogic T-solver for arithmetic, we show that, interestingly, the cost of result checking is only a small fraction of the total T-solver time.

Third, we report on extensive experiments running exactly the same SMT search using CPLEX and Barcelogic as T-solvers, where CPLEX tends to be slower than Barcelogic. We analyze these at first sight surprising results, explaining why tools such as CPLEX are not very adequate (nor designed) for this kind of relatively small incremental problems.

Finally, we show how our result checking techniques can still be very useful in combination with inexact floating-point-based T-solvers designed for incremental SMT problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., van Rossum, P., Schulz, S., Sebastiani, R.: The MathSAT 3 System. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 315–321. Springer, Heidelberg (2005)

    Google Scholar 

  2. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Dutertre, B., de Moura, L.: The YICES SMT Solver. Technical report, SRI International (2006), Available at http://yices.csl.sri.com

  4. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. de Moura, L., Bjorner, N.: Z3: An Efficient SMT Solver. Technical report, Microsoft Research, Redmon (2007), Available at http://research.microsoft.com/projects/z3

  6. ILOG. ILOG CPLEX v.11 (2007), http://www.ilog.com/products/cplex

  7. Makhorin, A.: GLPK 4.25 (GNU Linear Programming Kit) (2007), Available at http://www.gnu.org/software/glpk/

  8. Maros, I.: A general Phase-I method in linear programming. European Journal of Operational Research 23(1), 64–77 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  9. Nieuwenhuis, R., Oliveras, A.: Decision Procedures for SAT, SAT Modulo Theories and Beyond. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 23–46. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Nieuwenhuis, R., Oliveras, A.: DPLL(T) with Exhaustive Theory Propagation and its Application to Difference Logic. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 321–334. Springer, Heidelberg (2005)

    Google Scholar 

  11. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). Journal of the ACM, JACM 53(6), 937–977 (2006)

    MathSciNet  Google Scholar 

  12. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1987)

    Google Scholar 

  13. Tinelli, C., Ranise, S.: SMT-LIB: The Satisfiability Modulo Theories Library (2005), http://goedel.cs.uiowa.edu/smtlib/

  14. Yu, Y., Malik, S.: Lemma Learning in SMT on Linear Constraints. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 142–155. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hans Kleine Büning Xishun Zhao

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Faure, G., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E. (2008). SAT Modulo the Theory of Linear Arithmetic: Exact, Inexact and Commercial Solvers. In: Kleine Büning, H., Zhao, X. (eds) Theory and Applications of Satisfiability Testing – SAT 2008. SAT 2008. Lecture Notes in Computer Science, vol 4996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79719-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79719-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79718-0

  • Online ISBN: 978-3-540-79719-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics