Skip to main content

Thermal Activation Effects in Dynamic Force Spectroscopy and Atomic Friction

  • Chapter
Applied Scanning Probe Methods XI

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Two experimental applications of an atomic force microscope (AFM) are considered: dynamic force spectroscopy and atomic friction. The former is aimed at determination of bond properties of biological complexes by means of subjecting them to a steadily increasing pulling force until the bonds break. On the other hand, in atomic friction experiments, one investigates the friction forces acting on the AFM tip brought into contact with the surface and pulled with respect to it; usually, the tip’s motion proceeds via abrupt jumps from one lattice site of the surface to the next. Both forced rupture of chemical bonds and interstitial jumps are thermally activated events and are described within the same mathematical framework offered by Kramers’ rate theory. Characterization of the force-dependent rate of bond rupture/interstitial jumps provides one with a valuable insight into the relevant energy scales of the system studied. The standard approach to data analysis is based on the single-step rate equation, from which the logarithmic relation between the pulling velocity and the most probable force of bond rupture/interstitial jump follows. An alternative method of analyzing the experimental data is discussed, which allows one to test the applicability of the single-step rate equation in a given experimental system, and to accurately deduce the transition rate from the experimental data. Application of this method to both dynamic force spectroscopy and atomic friction experiments indicated that, generically, the single-step rate equation cannot explain the experimentally observed statistics of rupture/jump events. In the former case, the discrepancy between theory and experiments is explained quantitatively in terms of heterogeneity of chemical bonds involved, while in the latter case, the discrepancy is attributed to the ageing of the contact between the AFM tip and the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Binnig G, Quate CF, Gerber C (1986) Phys Rev Lett 56:930

    Article  Google Scholar 

  2. Meyer G, Amer NM (1988) Appl Phys Lett 53:1045

    Article  Google Scholar 

  3. Alexander S, Hellemans L, Marti O, Schneir J, Elings V., Hansma PK, Longmire M, Gurley J (1989) J Appl Phys 65:164

    Article  CAS  Google Scholar 

  4. Grubmüller H, Heynmann B, Tavan P (1996) Science 271:997

    Article  Google Scholar 

  5. Izrailev S, Stepaniants S, Balsera M, Oono Y, Schulten K (1997) Biophis J 72:1568

    CAS  Google Scholar 

  6. Sorensen MR, Jacobsen KW, Stoltze P (1996) Phys Rev B 53:2101

    Article  Google Scholar 

  7. Livshits AI, Shluger AL (1997) Phys Rev B 56:12482

    Article  CAS  Google Scholar 

  8. Heymann B, Grubmüller H (2001) Biophys J 81:1295

    CAS  Google Scholar 

  9. Grabert H (1992) Projection operator techniques in nonequilibrium statistical mechanics. Springer, Berlin

    Google Scholar 

  10. Hänggi P, Thomas H (1982) Phys Rep 88:207

    Article  Google Scholar 

  11. Risken H (1984) The Fokker-Planck equation, Springer, Berlin

    Google Scholar 

  12. Hänggi P, Talkner P, Borkovec M (1990) Rev Mod Phys 62:251

    Article  Google Scholar 

  13. Reimann P (2002) Phys Rep 361:57

    Article  CAS  Google Scholar 

  14. Florin E-L, Moy VT, Gaub HE (1994) Science 264:415

    Article  CAS  Google Scholar 

  15. Lee GU, Kidwell AD, Colton RJ (1994) Langmuir 94:354

    Article  Google Scholar 

  16. Moy VT, Florin E-L, Gaub HE (1994) Science 266:257

    Article  CAS  Google Scholar 

  17. Chilcotti A, Boland T, Ratner BD, Stayton PS (1995) Biophys J 69:2125

    Google Scholar 

  18. Lo Y-S, Zhu Y-J, Beebe Jr TB (1995) Langmuir 17:3741

    Article  CAS  Google Scholar 

  19. Dammer U, Hegner M, Anselmetti D, Wagner P, Dreier M, Huber W, Güntherodt H-J (1996) Biophys J 70:2437

    CAS  Google Scholar 

  20. Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H (1996) Proc Natl Acad Sci USA 93:3477

    Article  CAS  Google Scholar 

  21. Allen S, Chen X, Davies J, Davies MC, Dawkes AC, Edwards JC, Roberts CJ, Sefton J, Tendler SJB, Williams PM (1997) Biochemistry 36:7457

    Article  CAS  Google Scholar 

  22. Schwesinger F, Ros R, Strunz T, Anselmetti D, Güntherodt H-J, Honegger A, Jermutus L, Tiefenauer L, Plückthun A (2000) Proc Natl Acad Sci USA 97:9972

    Article  CAS  Google Scholar 

  23. Strunz T, Oroszlan K, Schäfer R, Günterodt H-J (1999)Proc Natl Acad Sci USA 96:11277

    Google Scholar 

  24. Green NH, Williams PM, Wahab O, Davies MC, Roberts CJ, Tendler SJB, Allen S (2004) Biophys J 86:3811

    Article  CAS  Google Scholar 

  25. Liphardt J, Onoa B, Smith SB, Tinoco Jr I, Bustamante C (2001) Science 292:733

    Article  CAS  Google Scholar 

  26. Imparato A, Peliti L (2004) Eur Phys J B 39:357

    Article  CAS  Google Scholar 

  27. Hukkanen EJ, Wieland JA, Gewirth A, Leckband DE, Braatz RD (2005) Biophys J 89:3434

    Article  CAS  Google Scholar 

  28. Wieland JA, Gewirth AA, Leckband DE (2005) J Biol Chem 280:41037

    Article  CAS  Google Scholar 

  29. Schlierf M, Li H, Fernandez JM (2004) Proc Natl Acad Sci USA 101:7299

    Article  CAS  Google Scholar 

  30. Raible M, Evstigneev M, Bartels FW, Eckel R, Nguyen-Duong M, Merkel R, Ros R, Anselmetti D, Reimann P (2006) Biophys J 90:3851

    Article  CAS  Google Scholar 

  31. Evans E, Ritchie K (1997) Biophys J 72:1541

    CAS  Google Scholar 

  32. Bell GI (1978) Science 200:618

    Article  CAS  Google Scholar 

  33. Rief M, Fernandez JM, Gaub HE (1998) Phys Rev Lett 81:4764

    Article  CAS  Google Scholar 

  34. Shillcock J, Seifert U (1998) Phys Rev E 57:7301

    Article  CAS  Google Scholar 

  35. Merkel R, Nassoy P, Leung A, Ritchie K, Evans E (1999) Nature 397:50

    Article  CAS  Google Scholar 

  36. Strunz T, Oroszlan K, Schumakovitch I, Güntherodt H-J, Hegner M (2000) Biophys J 79:1206

    CAS  Google Scholar 

  37. Heymann B, Grubmüller H (2000) Phys Rev Lett 84:6126

    Article  CAS  Google Scholar 

  38. Seifert U (2000) Phys Rev Lett 84:2750

    Article  CAS  Google Scholar 

  39. Evans E (2001) Annu Rev Biomol Struct 30:105

    Article  CAS  Google Scholar 

  40. Bartolo D, Derényi I, Ajdari A (2002) Phys Rev E.65:051910

    Article  CAS  Google Scholar 

  41. Nguyen-Duong N, Koch KW, Merkel R (2003) Europhys Lett 61:845

    Article  CAS  Google Scholar 

  42. Evans E, Leung A, Heinrich V, Zhu C (2004) Proc Natl Acad Sci USA 101:11281

    Article  CAS  Google Scholar 

  43. Derényi I, Bartolo D, Ajdari A (2004) Biophys J 86:1263

    Article  Google Scholar 

  44. Barsegov V, Thirumalai D (2005) Proc Natl Acad Sci USA 102:1835

    Article  CAS  Google Scholar 

  45. Barsegov V, Thirumalai D (2006) J Phys Chem B 110:26403

    Article  CAS  Google Scholar 

  46. Merkel R (2001) Phys Rep 346:343

    Article  CAS  Google Scholar 

  47. Kramers HA (1940) Physica (Utrecht) 7:284

    Article  CAS  Google Scholar 

  48. Fleming GR, Hänggi P (1993) (eds) Activated Barrier Crossing. World Scientific, Singapore

    Google Scholar 

  49. Talkner P, Hänggi P (1995) (eds) New Trends in Kramers Reaction Rate Theory. Kluwer, Dordrecht

    Google Scholar 

  50. Persson BNJ (1999) Surf Sci Rep 33:83

    Article  CAS  Google Scholar 

  51. Persson BNJ (2000) Sliding Friction, Springer, Berlin

    Google Scholar 

  52. Urbakh M, Klafter J, Gourdon D, Israelachvili J (2004) Nature 430:525

    Article  CAS  Google Scholar 

  53. Mosey NJ, Müser MH, Woo TK (2005) Science 307:1612

    Article  CAS  Google Scholar 

  54. Mate VM, McClelland GM, Erlandsson R, Chiang S (1987) Phys Rev Lett 59:1942

    Article  CAS  Google Scholar 

  55. Dedkov GV (2000) Physics Uspekhi 43:541

    Article  CAS  Google Scholar 

  56. Gnecco E, Bennewitz R, Gyalog T, Meyer E (2001) J Phys: Condens Matter 13:R619

    Article  CAS  Google Scholar 

  57. Braun OM, Naumovets AG (2006) Surf Sci Rep 60:79

    Article  CAS  Google Scholar 

  58. Gnecco E, Meyer E (2007) (eds) Fundamentals of Friction and Wear on the Nanoscale. Springer, Berlin Heidelberg New York

    Google Scholar 

  59. Schirmeisen A, Jansen L, Fuchs H (2005) Phys Rev B 71:245403

    Article  CAS  Google Scholar 

  60. Fujisawa S (1998) Phys Rev B 58:4909

    Article  CAS  Google Scholar 

  61. Sills S, Overney RM (2003) Phys Rev Lett 91:095501

    Article  CAS  Google Scholar 

  62. Schirmeisen A, Jansen L, Hölscher H, Fuchs H (2006) Appl Phys Lett 88:123108

    Article  CAS  Google Scholar 

  63. Riedo E, Gnecco E, Bennewitz R, Meyer E, Brune H (2003) Phys Rev Lett 91:084502

    Article  CAS  Google Scholar 

  64. Garg A (1995) Phys Rev B 51:15592

    Article  CAS  Google Scholar 

  65. Dudko OK, Hummer G, Szabo A (2006) Phys Rev Lett 96:108101

    Article  CAS  Google Scholar 

  66. Evstigneev M, Reimann P (2005) Phys Rev E 71:056119

    Article  CAS  Google Scholar 

  67. Evstigneev M, Reimann P (2005) Phys Rev B 73:113401

    Article  CAS  Google Scholar 

  68. Yukalov V I, Gluzman S, Sornette D (2003) Physica A 328:409

    Article  Google Scholar 

  69. Gluzman S, Yukalov VI, Sornette D (2003) Phys Rev E 67:026109

    Article  CAS  Google Scholar 

  70. Dembo M, Tourney DC, Saxman K, Hammer D (1988) Proc R Soc Lond B 234:55

    CAS  Google Scholar 

  71. Marshall BT, Long M, Piper JW, Yago T, McEver RP, Zhu C (2003) Nature 423:190

    Article  CAS  Google Scholar 

  72. Sang Y, Dubé M, Grant M (2001) Phys Rev Lett 87:174301

    Article  CAS  Google Scholar 

  73. Dudko OK, Filippov AE, Klafter J, Urbakh M (2002) Chem Phys Lett 352:499

    Article  CAS  Google Scholar 

  74. Dudko OK, Filippov AE, Klafter J, Urbakh M (2003) Proc Natl Acad Sci USA 100:11378

    Article  CAS  Google Scholar 

  75. Sheng Y-J, Jiang S, Tsao H-K (2005) J Chem Phys 123:091102

    Article  CAS  Google Scholar 

  76. Hummer G, Szabo A (2003) Biophys J 85:5

    CAS  Google Scholar 

  77. Corless RM, Gonnet GH, Hare DEG, Jeffrey DJ, Knuth DE (1996) Adv Comp Math 5:329

    Article  Google Scholar 

  78. Getfert S, Reimann P (2007) Phys Rev E 76:052901

    Article  CAS  Google Scholar 

  79. Raible M, Evstigneev M, Reimann P, Bartels FW, Ros R (2004) J Biotech 112:13

    Article  CAS  Google Scholar 

  80. Seifert U (2002) Europhys Lett 58:792

    Article  CAS  Google Scholar 

  81. Gergely G, Voegel J-C, Schaaf P, Senger B, Maaloum M, Hörber JKH, Hemmerlé J (2000) Proc Natl Acad Sci USA 97:10802

    Article  CAS  Google Scholar 

  82. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1999) Numerical recipes in C, Cambridge University Press

    Google Scholar 

  83. Williams PM (2003) Analytica Chimica Acta 479:107

    Article  CAS  Google Scholar 

  84. Evstigneev M, Reimann P (2003) Phys Rev E 68:045103

    Article  CAS  Google Scholar 

  85. Evstigneev M, Reimann P (2004) Europhys Lett 67:907

    Article  CAS  Google Scholar 

  86. Abramowitz M, Stegun I (1965) (eds) Handbook of mathematical functions, Dover, New York

    Google Scholar 

  87. Krylov SY, Jinesh KB, Valk H, Dienwiebel M, Frenken JWM (2005) Phys Rev E 71:65101

    Article  CAS  Google Scholar 

  88. Kurkijärvi J (1972) Phys Rev B 6:832

    Article  Google Scholar 

  89. Fulto TA, Dunkleberger LN (1974) Phys Rev B 9:4760

    Article  Google Scholar 

  90. Evstigneev M, Schirmeisen A, Jansen L, Fuchs H, Reimann P (2006) Phys Rev Lett 97:240601

    Article  CAS  Google Scholar 

  91. Taylor JR (1982) An Introduction to Error Analysis, University Science Books, Mill Valley, CA

    Google Scholar 

  92. Bartels FW, Baumgarth B, Anselmetti D, Ros R, Becker A (2003) J Struct Biol 143:145

    Article  CAS  Google Scholar 

  93. Eckel R, Wilking S-D, Becker A, Sewald N, Ros R, Anselmetti D (2005) Angew Chem Int Ed Engl 44:3921

    Article  CAS  Google Scholar 

  94. Eckel R, Ros R, DeckerB, Mattay J, Anselmetti D (2005) Angew Chem Int Ed Engl 44:484

    Article  CAS  Google Scholar 

  95. Vijayendran RA, Leckband DE (2001) Anal Chem 73:471

    Article  CAS  Google Scholar 

  96. Simson D A, Strigl M, Hohenadl M, Merkel R (1999) Phys Rev Lett 83:652

    Article  CAS  Google Scholar 

  97. Strigl M, Simson DA, Kacher CM, Merkel R (1999) Langmuir 15:7316

    Article  CAS  Google Scholar 

  98. Gnecco E, Bennewitz R, Gyalog T, Loppacher C, Bammerlin M, Meyer E, Güntherodt H-J (2000) Phys Rev Lett 84:1172

    Article  CAS  Google Scholar 

  99. Maier S, Sang Y, Filleter T, Grant M, Bennewitz R, Gnecco E, Meyer E (2005) Phys Rev B 72:245418

    Article  CAS  Google Scholar 

  100. Filippov AE, Klafter J, Urbakh M (2004) Phys Rev Lett 92:135503

    Article  CAS  Google Scholar 

  101. Evstigneev M, Schirmeisen A, Jansen L, Fuchs H, Reimann P (2008) J Phys: Condens Matt 20:35400

    Article  CAS  Google Scholar 

  102. Hölscher H, Schwarz UD, Zwörner O, Wiesendanger R (1998) Phys Rev B 57:2477

    Article  Google Scholar 

  103. Socoliuc A, Bennewitz R, Gnecco E, Meyer E (2004) Phys Rev Lett 92:134301

    Article  CAS  Google Scholar 

  104. Reimann P, Evstigneev M (2005) New J Phys 7:25

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Evstigneev, M. (2009). Thermal Activation Effects in Dynamic Force Spectroscopy and Atomic Friction. In: Applied Scanning Probe Methods XI. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85037-3_8

Download citation

Publish with us

Policies and ethics