Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 158))

  • 1337 Accesses

Summary

In bio-medicine optimal beam placement for radiation treatment requires consideration of different tissue areas which may have different properties that can be modelled using weighted regions. Solving a minimum separation problem in this domain corresponds to an optimal orientation for the beam. Such minimum separation problems can be solved efficiently by a software package called LinkSolver, that we describe in this chapter, which takes advantage of the underlying geometric properties of the minimum separation problem to find approximate solutions within a user specified tolerance of optimality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P., Erickson, J.: Space-time tradeoffs for emptiness queries, advances in discrete and computational geometry. Contemporary Mathematics 223, 1–56 (1999)

    MathSciNet  Google Scholar 

  2. Aleksandrov, Lanthier, Maheshwari, Sack.: An ε-approximation algorithm for weighted shortest paths on polyhedral surfaces. In: Proceedings of the 6th Scandinavian Workshop on Algorithm Theory, pp. 11–22 (1998)

    Google Scholar 

  3. Aleksandrov, L., Maheshwari, A., Sack, J.-R.: Approximation algorithms for geometric shortest path problems. In: Proceedings of the 32nd Annual Symposium on the Theory of Computing, pp. 286–295 (2000)

    Google Scholar 

  4. Aleksandrov, L., Maheshwari, A., Sack, J.-R.: Determining approximate shortest paths on weighted polyhedral surfaces. Journal of the ACM 52(1), 25–53 (2005)

    Article  MathSciNet  Google Scholar 

  5. Brahme, A.: Optimization of radiation therapy. International Journal of Radiation Oncology Biology Physics 28, 785–787 (1994)

    Google Scholar 

  6. Censor, Y., Altschuler, M., Powlis, W.: A computational solution of the inverse problem in radiation-therapy treatment planning. Applied Mathematics and Computation 25, 57–87 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen, D.Z., Daescu, O., Hu, X., Wu, X., Xu, J.: Determining an optimal penetration among weighted regions in two and three dimensions. Journal of Combinatorial Optimization 5(1), 59–79 (2001)

    Article  MathSciNet  Google Scholar 

  8. Chen, D.Z., Daescu, O., Dai, Y., Katoh, N., Wu, X.: Efficient algorithms and implementations for optimizing the sum of linear fractional functions, with applications. Journal of Combinatorial Optimization 9, 707–716 (2005)

    MathSciNet  Google Scholar 

  9. Chen, D.Z., Hu, X., Xu, J.: Optimal beam penetration in two and three dimensions. Journal of Combinatorial Optimization 7(2), 111–136 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cormen, T., Leiserson, C., Rivest, L., Stein, C.: Introduction to Algorithms, 2nd edn. McGraw-Hill, New York (2001)

    MATH  Google Scholar 

  11. Daescu, O.: Parallel optimal weighted links. In: Proceedings of ICCS, 1st International Workshop on Computational Geometry and Applications, pp. 649–657 (2001)

    Google Scholar 

  12. Daescu, O.: Improved optimal weighted links algorithms. In: Proceedings of ICCS, 2nd International Workshop on Computational Geometry and Applications, pp. 65–74 (2002)

    Google Scholar 

  13. Daescu, O., Mitchell, J.S.B., Ntafos, S., Palmer, J.D., Yap, C.K.: k-link shortest paths in weighted subdivisions. In: Proceedings of the 9th Annual Workshop on Algorithms and Data Structures, pp. 325–337 (2005)

    Google Scholar 

  14. Daescu, O., Palmer, J.: Minimum separation in weighted subdivisions. In: IJCGA (manuscript, submitted to 2003)

    Google Scholar 

  15. Falk, J.E., Palocsay, S.W.: Optimizing the sum of linear fractional functions. Collection: Recent Advances in Global Optimization, 221–258 (1992)

    Google Scholar 

  16. Gewali, L., Meng, A., Mitchell, J.S., Ntafos, S.: Path planning in 0/1/ weighted regions with applications. In: Proceedings of the 4th Annual Symposium on Computational Geometry, pp. 266–278 (1988)

    Google Scholar 

  17. Group, T.C.D.: CORE library project, http://www.cs.nyu.edu/exact/core

  18. Krozel, J., Lee, C., Mitchell, J.S.B.: Estimating time of arrival in heavy weather conditions. In: Proceedings of AIAA Guidance, Navigation, and Control, pp. 1481–1495 (1999)

    Google Scholar 

  19. Lanthier, M., Maheshwari, A., Sack, J.-R.: Approximating weighted shortest paths on polyhedral surfaces. In: Proceedings of the 13th Annual Symposium on Computational Geometry, pp. 485–486 (1997)

    Google Scholar 

  20. Lanthier, M., Maheshwari, A., Sack, J.-R.: Approximating shortest paths on weighted polyhedral surfaces. Algorithmica 30(4), 527–562 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lee, D.T., Yang, C.D., Chen, T.H.: Shortest rectilinear paths among weighted obstacles. International Journal of Computational Geometry and Applications 1(2), 109–124 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  22. Maintz, J., Viergever, M.: A survey of medical image registration. Medical Image Analysis 2(1), 1–36 (1998)

    Article  Google Scholar 

  23. Mata, C., Mitchell, J.: A new algorithm for computing shortest paths in weighted planar subdivisions. In: Proceedings of the 13th International Annual Symposium on Computational Geometry, pp. 264–273 (1997)

    Google Scholar 

  24. McCubbin, C.B., Piatko, C.D., Peterson, A.V., Donnald, C.R.: Cooperative organic mine avoidance path planning. In: Proceedings of SPIE Detection and Remediation Technologies for Mines and Minelike Targets, vol. 5794 (2005)

    Google Scholar 

  25. McInerney, T., Terzopoulos, D.: Deformable models in medical images analysis: a survey. Medical Image Analysis 1, 91–108 (1996)

    Article  Google Scholar 

  26. Mitchell, J., Papadimitriou, C.: The weighted region problem. In: Proceedings of the 3rd Annual Symposium on Computational Geometry, pp. 30–38 (1987)

    Google Scholar 

  27. Mitchell, J.S.B.: Planning Shortest Paths. Ph.D thesis, Stanford University (August 1986)

    Google Scholar 

  28. Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry. Elsevier Science, Amsterdam (2000)

    Google Scholar 

  29. Mitchell, J.S.B., Papadimitriou, C.H.: The weighted region problem: Finding shortest paths through a weighted planar subdivision. Journal of the ACM 38(1), 18–73 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  30. N.L.: of Medicine. The visible human project, http://www.nlm.nih.gov/research/visible

  31. Reif, J., Sun, Z.: An efficient approximation algorithm for weighted region shortest path problem. In: Proceedings of the 4th Workshop on Algorithmic Foundations of Robotics, March 16–18 (2000)

    Google Scholar 

  32. Schweikard, A., Adler, J., Latombe, J.: Motion planning in stereotactic radiosurgery. IEEE Transactions on Robotics and Automation 9, 764–774 (1993)

    Article  Google Scholar 

  33. Shewchuk, J.R.: Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator. In: Lin, M.C., Manocha, D. (eds.) FCRC-WS 1996 and WACG 1996. LNCS, vol. 1148, pp. 203–222. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  34. Sun, Z., Reif, J.H.: Adaptive and compact discretization for weighted region optimal path finding. In: Proceedings of the 14th Symposium on Fundamentals of Computation Theory (2003)

    Google Scholar 

  35. Yang, C.D., Chen, T.H., Lee, D.T.: Shortest rectilinear paths among weighted rectangles. Journal of Information Processing 13(4), 456–462 (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Daescu, O., Palmer, J.D. (2009). Modeling Optimal Beam Treatment with Weighted Regions for Bio-medical Applications. In: Gavrilova, M.L. (eds) Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence. Studies in Computational Intelligence, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85126-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85126-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85125-7

  • Online ISBN: 978-3-540-85126-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics