Skip to main content

Dense Glyph Sampling for Visualization

  • Chapter
Visualization and Processing of Tensor Fields

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 1759 Accesses

Summary

We present a simple and efficient approach to generate a dense set of anisotropic, spatially varying glyphs over a two-dimensional domain. Such glyph samples are useful for many visualization and graphics applications. The glyphs are embedded in a set of nonoverlapping ellipses whose size and density match a given anisotropic metric. An additional parameter controls the arrangement of the ellipses on lines, which can be favorable for some applications, for example, vector fields and distracting for others. To generate samples with the desired properties, we combine ideas from sampling theory and mesh generation. We start with constructing a first set of nonoverlapping ellipses whose distribution closely matches the underlying metric. This set of samples is used as input for a generalized anisotropic Lloyd relaxation to distribute samples more evenly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Q. Du, V. Faber, and M. Gunzburger. Centroidal voronoi tessellations: Applications and algorithms. SIAM Review, 41(4):637–676, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  2. Q. Du and D. Wang. Anisotropic centroidal voronoi tessellations and their applications. SIAM Journal on Scientific Computing, 26(3):737–761, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  3. L. Feng, I. Hotz, B. Hamann, and K. Joy. Anisotropic noise samples. IEEE Transactions on Visualization and Computer Graphics, 14(2):342–354, 2008.

    Article  Google Scholar 

  4. L.-P. Fritzsche, H. Hellwig, S. Hiller, and O. Deussen. Interactive design of authentic looking mosaics using voronoi structures. In Proceedings of 2nd International Symposium on Voronoi Diagrams in Science and Engineering, Seoul, Korea, 2005.

    Google Scholar 

  5. A. S. Glassner. Principles of Digital Image Synthesis: Volume Two . The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling. Morgan Kaufmann, 1995. GLA a 95:2 1.Ex.

    Google Scholar 

  6. A. Hausner. Simulating decorative mosaics. In E. Fiume, editor, SIGGRAPH 2001, Computer Graphics Proceedings, pp. 573–578, 2001.

    Google Scholar 

  7. S. Hiller, H. Hellwig, and O. Deussen. Beyond stippling — methods for distributing objects on the plane. Computer Graphics Forum, 22(3):515–522, 2003.

    Article  Google Scholar 

  8. A. J. S. Hin and F. H. Post. Visualization of turbulent flow with particles. In VIS ’93: Proceedings of the 4th conference on Visualization ’93, pp. 46–53, 1993.

    Google Scholar 

  9. I. Hotz, L. Feng, H. Hagen, B. Hamann, B. Jeremic, and K. I. Joy. Physically based methods for tensor field visualization. In VIS ’04: Proceedings of IEEE Visualization 2004, PP. 123–130. IEEE Computer Society Press, 2004.

    Google Scholar 

  10. G. Kindlmann. Superquadric tensor glyphs. In Proceeding of The Joint Eurographics — IEEE TCVG Symposium on Visualization, pp. 147–154, 2004.

    Google Scholar 

  11. G. Kindlmann, D. Weinstein, and D. Hart. Strategies for direct volume rendering of diffusion tensor fields. IEEE Transactions on Visualization and Computer Graphics, 6(2):124–138, 2000.

    Article  Google Scholar 

  12. G. Kindlmann and C.-F. Westin. Diffusion tensor visualization with glyph packing. IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization/Information Visualization 2006), 12(5):1329–1336, 2006.

    Article  Google Scholar 

  13. R. M. Kirby, H. Marmanis, and D. H. Laidlaw. Visualizing multivalued data from 2D incompressible flows using concepts from painting. In D. Ebert, M. Gross, and B. Hamann, editors, IEEE Visualization ’99, pp. 333–340, San Francisco, 1999.

    Google Scholar 

  14. M.-H. Kiu and D. C. Banks. Multi-frequency noise for lic. In VIS ’96: Proceedings of the 7th conference on Visualization ’96, pp. 121–126, Los Alamitos, CA, USA, 1996. IEEE Computer Society Press.

    Google Scholar 

  15. D. E. Knuth. Digital halftones by dot diffusion. ACM Transactions on Graphics, 6(4):245–273, 1987.

    Article  MATH  Google Scholar 

  16. F. Labelle and J. R. Shewchuk. Anisotropic voronoi diagrams and guaranteed-quality anisotropic mesh generation. In SCG ’03: Proceedings of the nineteenth annual symposium on Computational geometry, pp. 191–200, New York, NY, USA, 2003. ACM Press.

    Google Scholar 

  17. D. H. Laidlaw, E. T. Ahrens, D. Kremers, M. J. Avalos, R. E. Jacobs, and C. Readhead. Visualizing diffusion tensor images of the mouse spinal cord. In D. Ebert, H. Hagen, and H. Rushmeier, editors, IEEE Visualization ’98 (VIS ’98), pp. 127–134, Washington-Brussels-Tokyo, Oct. 1998. IEEE, IEEE Computer Society Press.

    Google Scholar 

  18. S. P. Lloyd. Least square quantization in pcm. IEEE Transactions on Information Theory, 28(2):129–137, 1982.

    Article  MathSciNet  Google Scholar 

  19. V. Ostromoukhov. A simple and efficient error-diffusion algorithm. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pp. 567–572. ACM Press, 2001.

    Google Scholar 

  20. V. Ostromoukhov, C. Donohue, and P.-M. Jodoin. Fast hierarchical importance sampling with blue noise properties. ACM Transactions on Graphics, 23(3):488–495, 2004.

    Article  Google Scholar 

  21. A. R. Sanderson, C. R. Johnson, and R. M. Kirby. Display of vector fields using a reaction-diffusion model. In VIS ’04: Proceedings of the conference on Visualization ’04, pp. 115–122, Washington, DC, USA, 2004. IEEE Computer Society.

    Google Scholar 

  22. K. Shimada, A. Yamada, and T. Itoh. Anisotropic triangulation of parametric surfaces via close packing of ellipsoids. International Journal of Computational Geometry and Application, 10(4):417–440, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  23. G. Turk and D. Banks. Image-guided streamline placement. Computer Graphics, 30(Annual Conference Series):453–460, 1996.

    Google Scholar 

  24. R. Ulichney. Digital halftoning . MIT Press, Cambridge, MA, USA, 1987.

    Google Scholar 

  25. L. Velho and J. de Miranda Gomes. Digital halftoning with space filling curves. In Proceedings of the 18th annual conference on Computer graphics and interactive techniques, pp. 81–90. ACM Press, 1991.

    Google Scholar 

Download references

Acknowledgments

The brain dataset is the courtesy of Gordon Kindlmann, Scientific Computing and Imaging Institute, University of Utah, and Andrew Alexander, W. M. Keck Laboratory for Functional Brain Imaging and Behavior, University of Wisconsin-Madison. This work was partially supported by the German Research Foundation DFG (Emmy-Noether Research group) and by the National Science Foundation under contracts ACI 9624034 (CAREER Award), through the Large Scientific and Software Data Set Visualization (LSSDSV) program under contract ACI 9982251, and a large Information Technology Research (ITR) grant; the National Institutes of Health under contract P20 MH60975-06A2, funded by the National Institute of Mental Health and the National Science Foundation. Further, we thank the members of the Visualization and Computer Graphics Research Groups at the Zuse Institute Berlin and the Institute for Data Analysis and Visualization (IDAV) at the University of California, Davis.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Feng, L., Hotz, I., Hamann, B., Joy, K. (2009). Dense Glyph Sampling for Visualization. In: Laidlaw, D., Weickert, J. (eds) Visualization and Processing of Tensor Fields. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88378-4_9

Download citation

Publish with us

Policies and ethics