Skip to main content

Lab on a Chip

  • Chapter
  • First Online:
Nanoscience
  • 1824 Accesses

Abstract

The reliable and fast detection of chemical or biological molecules, or the measurement of their concentrations in a sample, are key problems in many fields such as environmental analysis, medical diagnosis, or the food industry. There are traditionally two approaches to this problem. The first aims to carry out a measurement in situ in the sample using chemical and biological sensors. The constraints imposed by detection limits, specificity, and in some cases stability are entirely imputed to the sensor. The second approach uses so-called total analysis systems to process the sample according to a protocol made up of different steps, such as extractions, purifications, concentrations, and a final detection stage. The latter is made in better conditions than with the first approach, which may justify the greater complexity of the process. It is this approach that is implemented in most methods for identifying pathogens, whether they be in biological samples (especially for in vitro diagnosis) or samples taken from the environment. The instrumentation traditionally used to carry out these protocols comprises a set of bulky benchtop apparatus, which needs to be plugged into the mains in order to function. However, there are many specific applications (to be discussed in this chapter) for which analysis instruments with the following characteristics are needed: Possibility of use outside the laboratory, i.e., instruments as small as possible, consuming little energy, and largely insensitive to external conditions of temperature, humidity, vibrations, and so on. Possibility of use by non-specialised agents, or even unmanned operation. Possibility of handling a large number of samples in a limited time, typically for high-throughput screening applications. Possibility of handling small samples. At the same time, a high level of performance is required, in particular in terms of (1) the detection limit, which must be as low as possible, (2) specificity, i.e., the ability to detect a particular molecule in a complex mixture, and (3) speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Manz, A., Graber, N., Widmer, H.M.: Miniaturized total chemical analysis systems: A novel concept for chemical sensing, Sensors and Actuators B: Chemical 1 (1–6), 244–248 (1990)

    Article  Google Scholar 

  2. Bange, A., Halsall, H.B., Heineman, W.R.: Microfluidic immunosensor systems, Biosensors and Bioelectronics 20, 2488–2503 (2005)

    Article  CAS  PubMed  Google Scholar 

  3. Vilkner, T., Janasek, D., Manz, A.: Micro total analysis systems. Recent developments, Analytical Chemistry 76 (12), 3373 (2004)

    CAS  Google Scholar 

  4. Reyes, D.R., et al.: Micro total analysis systems. 1. Introduction, Theory, and Technology, Analytical Chemistry 74 (12), 2623–2636 (2002)

    CAS  Google Scholar 

  5. Auroux, P.-A., et al.: Micro total analysis systems. 2. Analytical standard operations and applications, Analytical Chemistry 74 (12), 2637–2652 (2002)

    CAS  Google Scholar 

  6. Oosterbroek, R.E., van den Berg, A.: Lab-on-a-Chip, Miniaturized Systems for (Bio)Chemical Analysis and Synthesis, ed. by R.E. Oosterbroek and A. van den Berg, Elsevier (2003) p. 394

    Google Scholar 

  7. Tüdõs, A.J., Besselink, G.A.J., Schasfoort, R.B.M.: Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry, Lab on a Chip 1 (2), 83–95 (2001)

    Article  PubMed  CAS  Google Scholar 

  8. Hobson, N.S., Tothill, I., Turner, A.P.F.: Microbial detection, Biosensors and Bioelectronics 11 (5), 455–477 (1996)

    Article  CAS  PubMed  Google Scholar 

  9. Ahmed, F.E.: Detection of genetically modified organisms in foods, Trends in Biotechnology 20 (5), 215–223 (2002)

    Article  CAS  PubMed  Google Scholar 

  10. Koester, C.J., Simonich, S.L., Esser, B.K.: Environmental Analysis, Analytical Chemistry 75, 2813–2829 (2003)

    Article  CAS  Google Scholar 

  11. Richardson, S.D.: Water analysis: Emerging contaminants and current issues, Analytical Chemistry 75 (12), 2831–2857 (2003)

    Article  CAS  Google Scholar 

  12. Iqbal, S.S., et al.: A review of molecular recognition technologies for detection of biological threat agents, Biosensors and Bioelectronics 15 (11–12), 549–578 (2000)

    Article  CAS  PubMed  Google Scholar 

  13. Wang, J.: Microchip devices for detecting terrorist weapons, Analytica Chimica Acta 507 (1) 3–10 (2004)

    Article  CAS  Google Scholar 

  14. Skelley, A.M., et al. Development and evaluation of a microdevice for amino acid biomarker detection and analysis on Mars, P.N.A.S. USA 102 (4), 1041–1046 (2005)

    Article  CAS  Google Scholar 

  15. White, T.J.: The future of PRC technology: Diversification of technologies and applications, Trends in Biotechnology 14 (12), 478–483 (1996)

    Article  CAS  PubMed  Google Scholar 

  16. Le Pioufle, B., Frenea, M., Tixier, A.: Biopuces pour le traitement de cellules vivantes: Micromanipulation des cellules par voie électrique ou microfluidique, Comptes Rendus Physique 5 (5), 589–596 (2004)

    Article  ADS  CAS  Google Scholar 

  17. El-Ali, J., Sorger, P.K., Jensen, K.F.: Cells on chips, Nature 442 (7101), 403 (2006)

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Lichtenberg, J., de Rooij, N.F., Verpoorte, E.: Sample pretreatment on microfabricated devices, Talanta 56 (2), 233–266 (2002)

    Article  CAS  PubMed  Google Scholar 

  19. Pawliszyn, J.: Sample preparation: Quo Vadis?, Analytical Chemistry 75 (11), 2543–2558 (2003)

    Article  CAS  PubMed  Google Scholar 

  20. Andersson, H., et al.: Micromachined flow-through filter-chamber for chemical reactions on beads, Sensors and Actuators B: Chemical 67 (1–2), 203–208 (2000)

    Article  Google Scholar 

  21. Xing, X., et al.: Micromachined membrane particle filters, Sensors and Actuators A: Physical 73 (1–2), 184–191 (1999)

    Google Scholar 

  22. Desai, T.A., et al.: Nanoporous anti-fouling silicon membranes for biosensor applications, Biosensors and Bioelectronics 15 (9–10), 453–462 (2000)

    Article  CAS  PubMed  Google Scholar 

  23. Brody, J.P., Yager, P.: Diffusion-based extraction in a microfabricated device, Sensors and Actuators A: Physical 58 (1), 13–18 (1997)

    Article  Google Scholar 

  24. Hatch, A., et al.: A rapid diffusion immunoassay in a T-sensor, Nature Biotechnology 19 (5), 461–465 (2001)

    Article  CAS  PubMed  Google Scholar 

  25. Raymond, D.E., Manz, A., Widmer, H.M.: Continuous sample pretreatment using a free-flow electrophoresis device integrated onto a silicon chip, Anal. Chem. 66, 2858–2865 (1994)

    Article  CAS  Google Scholar 

  26. Stachowiak, T.B., Svec, F., Frechet, J.M.J.: Chip electrochromatography, Journal of Chromatography A 1044 (1–2), 97–111 (2004)

    Article  CAS  PubMed  Google Scholar 

  27. Sarrut, N., et al.: Enzymatic digestion and liquid chromatography in micro-pillar reactors; hydrodynamic versus electroosmotic driven flow. In: Photonics West, Microfluidics, BioMEMS and Medical Microsystems III, San Jose, California: SPIE-Int. Soc. Opt. Eng. (2005)

    Google Scholar 

  28. Oleschuk, R.D., et al.: Trapping of bead-based reagents within microfluidic systems: On-chip solid-phase extraction and electrochromatography, Analytical Chemistry 72 (3), 585–590 (2000)

    Article  CAS  PubMed  Google Scholar 

  29. Yu, C., et al.: Monolithic porous polymer for on-chip solid-phase extraction and preconcentration prepared by photoinitiated in situ polymerization within a microfluidic device, Analytical Chemistry 73 (21), 5088–5096 (2001)

    Article  CAS  PubMed  Google Scholar 

  30. Stachowiak, T.B., et al.: Fabrication of porous polymer monoliths covalently attached to the walls of channels in plastic microdevices, Electrophoresis 24 (21), 3689–3693 (2003)

    Article  CAS  PubMed  Google Scholar 

  31. Lion, N., et al.: Microfluidic systems in proteomics, Electrophoresis 24 (21), 3533–3562 (2003)

    Article  CAS  PubMed  Google Scholar 

  32. Fan, Z.H., et al.: Dynamic DNA hybridization on a chip using paramagnetic beads, Analytical Chemistry 71 (21), 4851–4859 (1999)

    Article  CAS  PubMed  Google Scholar 

  33. Choi, J.-W., et al.: Development and characterization of microfluidic devices and systems for magnetic bead-based biochemical detection, Biomedical Microdevices 3 (3), 191–200 (2001)

    Article  CAS  Google Scholar 

  34. Tokeshi, M., et al.: Continuous-flow chemical processing on a microchip by combining microunit operations and a multiphase flow network, Analytical Chemistry 74 (7), 1565–1571 (2002)

    Article  CAS  PubMed  Google Scholar 

  35. Hashimoto, M., et al.: Rapid PCR in a continuous flow device, Lab on a Chip 4 (6), 638–645 (2004)

    Article  CAS  PubMed  Google Scholar 

  36. Giordano, B.C., et al.: Polymerase chain reaction in polymeric microchips: DNA amplification in less than 240 seconds, Analytical Biochemistry 291 (1), 124–132 (2001)

    Article  CAS  PubMed  Google Scholar 

  37. Guijt, R.M., et al.: Chemical and physical processes for integrated temperature control in microfluidic devices, Lab on a Chip 3 (1), 1–4 (2003)

    Article  CAS  PubMed  Google Scholar 

  38. Roper, M.G., Easley, C.J., Landers, J.P.: Advances in polymerase chain reaction on microfluidic chips, Analytical Chemistry 77 (12), 3887–3893 (2005)

    Article  CAS  PubMed  Google Scholar 

  39. Schwarz, M.A., Hauser, P.C.: Recent developments in detection methods for microfabricated analytical devices, Lab on a Chip 1 (1), 1–6 (2001)

    Article  CAS  PubMed  Google Scholar 

  40. Fritz, J., et al.: Translating biomolecular recognition into nanomechanics, Science 288 (5464), 316–318 (2000)

    Article  CAS  PubMed  ADS  Google Scholar 

  41. Drummond, G., Hill, M.G., Barton, J.K.: Electrochemical DNA sensors, Nature Biotechnology 21 (10), 1192–1199 (2003)

    Article  CAS  PubMed  Google Scholar 

  42. Bakker, E., Qin, Y.: Electrochemical Sensors, Anal. Chem. 78 (12), 3965–3984 (2006)

    Article  CAS  PubMed  Google Scholar 

  43. Miller, M.M., et al.: Detection of a micron-sized magnetic sphere using a ring-shaped anisotropic magnetoresistance-based sensor: A model for a magnetoresistance-based biosensor, Applied Physics Letters 81 (12), 2211–2213 (2002)

    Article  CAS  ADS  Google Scholar 

  44. Cui, Y., al.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science 293, 1289–1292 (2001)

    Google Scholar 

  45. Patolsky, F., Zheng, G., Lieber, C.M.: Nanowire-based biosensors, Analytical Chemistry 78 (13), 4261 (2006)

    Article  Google Scholar 

  46. Gu, L.-Q., Cheley, S., Bayley, H.: Capture of a single molecule in a nanocavity, Science 291, 636–640 (2001)

    Article  CAS  PubMed  ADS  Google Scholar 

  47. Saleh, O.A., Sohn, L.L.: An artificial nanopore for molecular sensing, Nano Letters 3 (1), 37–38 (2003)

    Article  CAS  ADS  Google Scholar 

  48. Gut, I.G.: Automation in genotyping of single nucleotide polymorphisms, Human Mutation 17, 475–492 (2001)

    Article  CAS  PubMed  Google Scholar 

  49. Aebersold, R., Mann M.: Mass spectrometry-based proteomics, Nature 422, 198–207 (2003)

    Article  CAS  PubMed  ADS  Google Scholar 

  50. Hierlemann, A., et al.: Microfabrication techniques for chemical/biosensors, Proceedings of the IEEE 91 (6), 839–863 (2003)

    Article  CAS  Google Scholar 

  51. Verpoorte, E.M.J., de Rooij, N.F.: Microfluidics meets MEMS, Proceedings of the IEEE 91 (6), 930–953 (2003)

    Article  CAS  Google Scholar 

  52. Becker, H., Locascio, L.E.: Polymer microfluidic devices, Talanta 56 (2), 221–378 (2002)

    Article  Google Scholar 

  53. Spearing, S.M.: Materials issues in microelectromechanical systems (MEMS), Acta Materialia 48 (1), 179–196 (2000)

    Article  CAS  Google Scholar 

  54. Kovacs, G.T.A., Maluf, N.I., Petersen, K.E.: Bulk micromachining of silicon, Proceedings of the IEEE 86 (8), 1536–1551 (1998)

    Article  CAS  Google Scholar 

  55. Bustillo, J.M., Howe, R.T., Muller, R.S.: Surface micromachining for microelectromechanical systems, Proceedings of the IEEE 86 (8), 1552–1574 (1998)

    Article  CAS  Google Scholar 

  56. Duffy, D.C., et al.: Rapid prototyping of microfluidic systems in poly (dimethylsiloxane), Analytical Chemistry 70 (23), 4974–4984 (1998)

    Article  CAS  Google Scholar 

  57. Heckele, M., Schomburg, W.K.: Review on micro molding of thermoplastic polymers, Journal of Micromechanics and Microengineering 14 (3), R1–R14 (2004)

    Article  CAS  ADS  Google Scholar 

  58. Noerholm, M., et al.: Polymer microfluidic chip for online monitoring of microarray hybridizations, Lab on a Chip 4 (1), 28–37 (2004)

    Article  CAS  PubMed  Google Scholar 

  59. Rossier, J.S., et al.: Plasma etched polymer microelectrochemical systems, Lab on a Chip 2 (3), 145–150 (2002)

    Article  CAS  PubMed  Google Scholar 

  60. Anderson, R.C., et al.: A miniature integrated device for automated multistep genetic assays, Nucleic Acids Research 28 (12), E60 (2000)

    Article  CAS  PubMed  Google Scholar 

  61. Liu, R.H., et al.: Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection, Analytical Chemistry 76 (7), 1824–1831 (2004)

    Article  CAS  PubMed  Google Scholar 

  62. Easley, C.J. et al.: A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability, Proceedings of the National Academy of Sciences 103 (51), 19272–19277 (2006)

    Article  CAS  ADS  Google Scholar 

  63. Hong, J.W., et al.: A nanoliter-scale nucleic acid processor with parallel architecture, Nature Biotechnology 22 (4), 435–439 (2004)

    Article  CAS  PubMed  Google Scholar 

  64. Hong, J.W., et al.: Molecular biology on a microfluidic chip, Journal of Physics: Condensed Matter 18 (18) (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Puget .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Puget, P. (2009). Lab on a Chip. In: Boisseau, P., Houdy, P., Lahmani, M. (eds) Nanoscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88633-4_20

Download citation

Publish with us

Policies and ethics