Skip to main content

Role of g -Aminobutyrate and g -Hydroxybutyrate in Plant Communication

  • Chapter
  • First Online:
Plant-Environment Interactions

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

The neurotransmitters gamma-aminobutyrate (GABA) and gamma-hydroxybutyrate (GHB) are found in virtually all prokaryotic and eukaryotic organisms. The physiological roles of these metabolites in plants are not yet clear, but both readily accumulate in response to stress through a combination of biochemical and transcriptional processes. GABA accumulation has been associated with the appearance of extracellular GABA, and evidence is available for a role of extracellular GABA in communications between plants and animals, fungi, bacteria or other plants, although the mechanisms by which GABA functions in communication appear to be diverse. As yet there is no evidence from plants of GHB receptors, GHB signaling or extracellular GHB, although the level of the quorum-sensing signal in Agrobacterium is known to be modulated by GHB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akama K, Takaiwa F (2007) C-terminal extension of rice glutamate decarboxylase (OsGAD2) functions as an autoinhibitory domain and overexpression of a truncated mutant results in the accumulation of extremely high levels of GABA in plant cells. J Exp Bot 58:2699–2707

    Article  PubMed  CAS  Google Scholar 

  • Allan WL, Peiris C, Bown AW, Shelp BJ (2003) Gamma-hydroxybutyrate accumulates in green tea leaves and soybean sprouts in response to oxygen deficiency. Can J Plant Sci 83:951–953

    Article  CAS  Google Scholar 

  • Allan WL, Simpson JP, Clark SM, Shelp BJ (2008) γ-Hydroxybutyrate accumulation in Arabidopsis and tobacco plants is a general response to abiotic stress: putative regulation by redox balance and glyoxylate reductase isoforms. J Exp Bot 59(9):2545–2554

    Article  PubMed  Google Scholar 

  • Ansari MI, Lee RH, Chen RG (2005) A novel senescence-associated gene encoding γ-aminobutyric acid (GABA): pyruvate transaminase is upregulated during rice leaf senescence. Physiol Plant 123:1–8

    Article  CAS  Google Scholar 

  • Aurisano N, Bertani A, Regianni R (1995) Anaerobic accumulation of 4-aminobutyrate in rice seedlings: causes and significance. Phytochemistry 38:1147–1150

    Article  CAS  Google Scholar 

  • Bartyzel I, Pelczar K, Paskowski A (2003/4) Functioning of the γ-aminobutyrate pathway in wheat seedlings affected by osmotic stress. Biol Plant 47:221–225

    Article  CAS  Google Scholar 

  • Beuvé N, Rispail N, Laine P, Cliquet J-B, Ourry A, Le Deunff E (2004) Putative role of γ-aminobutyric acid as a long-distance signal in up-regulation of nitrate uptake in Brassica napus L. Plant Cell Environ 27:1035–1046

    Article  Google Scholar 

  • Bolarin MC, Santa-Cruz A, Cayuela E, Perez-Alfocea F (1995) Short-term solute changes in leaves and roots of cultivated and wil tomato seedlings under salinity. J Plant Physiol 147:463–468

    Article  CAS  Google Scholar 

  • Bouché N, Fromm H (2004) GABA in plants: just a metabolite?. Trends Plant Sci 9:110–115

    Article  PubMed  Google Scholar 

  • Bouché N, Fait A, Bouchez D, Moller SG, Fromm H (2003a) Mitochondrial succinic-semialdehyde dehydrogenase of the gamma-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proc Natl Acad Sci USA 100:6843–6848

    Article  Google Scholar 

  • Bouché N, Lacomb B, Fromm H (2003b) GABA signalling: a conserved and ubiquitous mechanism. Trends Cell Biol 13:607–610

    Article  Google Scholar 

  • Bown AW, Shelp BJ (1989) The metabolism and physiological roles of 4-aminobutyric acid. Biochemistry (Life Sci Adv) 8:21–25

    Google Scholar 

  • Bown AW, Zhang G (2000) Mechanical stimulation, 4-aminobutyric acid (GABA) synthesis, and growth inhibition in soybean hypocotyl tissue. Can J Bot 78:119–1123

    CAS  Google Scholar 

  • Bown AW, Hall DE, MacGregor KB (2002) Insect footsteps on leaves stimulate the accumulation of 4-aminobutyrate and can be visualized through increased chlorophyll fluorescence and superoxide production. Plant Physiol 129:1430–1434

    Article  PubMed  CAS  Google Scholar 

  • Bown AW, MacGregor KB, Shelp BJ (2006) Gamma-aminobutyrate: defense against invertebrate pests?. Trends Plant Sci 11:424–427

    Article  PubMed  CAS  Google Scholar 

  • Breitkreuz KE, Allan WL, Van Cauwenberghe OR, Jakobs C, Talibi D, Andre B, Shelp BJ (2003) A novel gamma-hydroxybutyrate dehydrogenase: identification and expression of an Arabidopsis cDNA and potential role under oxygen deficiency. J Biol Chem 278:41552–41556

    Article  PubMed  CAS  Google Scholar 

  • Busch KB, Fromm H (1999) Plant sucinic semialdehyde dehydrogenase. Cloning, purification, localization in mitochondria, and regulation by adenine nucleotides. Plant Physiol 121:589–59 7

    Article  PubMed  CAS  Google Scholar 

  • Carlier A, Chevrot R, Dessaux Y, Faure D (2004) The assimilation of γ-butyrolactone in Agrobacterium tumfaciens C58 interferes with the accumulation of the N-acyl-homoserine lactone signal. Mol Plant Microbe Interact 17:951–957

    Article  PubMed  CAS  Google Scholar 

  • Carroll AD, Fox GC, Laurie S, Phillips R, Ratcliffe RG, Stewart GR (1994) Ammonium assimilation and the role of γ-aminobutyric acid in pH homeostasis in carrot cell suspensions. Plant Physiol 106:513–520

    PubMed  CAS  Google Scholar 

  • Chai Y, Tsai CS, Cho H, Winans SC (2007) Reconstitution of the biochemical activities of the AttJ repressor and the AttK, AttL, and AttM catabolic enzymes of Agrobacterium tumefaciens. J Bacteriol 189:3674–3679

    Article  PubMed  CAS  Google Scholar 

  • Chevrot R, Rosen R, Haudecoeur E, Cirou A, Shelp BJ, Ron E, Faure D (2006) GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 103:7460–7464

    Article  PubMed  CAS  Google Scholar 

  • Cholewa E, Cholewinski A J, Shelp BJ, Snedden WA, Bown AW (1997) Cold shock-stimulated γ-aminobutyric acid synthesis is mediated by an increase in cytosolic Ca2+, not by an increase in cytosolic H+. Can J Bot 75:375–382

    Article  CAS  Google Scholar 

  • Chung I, Bown AW, Shelp BJ (1992) The production and efflux of 4-aminobutyrate in isolated mesophyll cells. Plant Physiol 99:659–664

    Article  PubMed  CAS  Google Scholar 

  • Cramer GR, Ergül A, Grimplet J, Tillett RL, Tattersall EAR, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:111–134

    Article  PubMed  CAS  Google Scholar 

  • Crawford LA, Bown AW, Breitkreuz KE, Guinel F (1994) The synthesis of γ-aminobutyric acid in response to treatments reducing cytosolic pH. Plant Physiol 104:865–871

    PubMed  CAS  Google Scholar 

  • Deeken R, Engelmann JC, Efetova M, Czirjak T, Müller T, Kaiser WM, Tietz O, Krischke M, Mueller MJ, Palme K, Dandekar T, Hedrich R (2006) An integrated view of gene expression and solute profiles of Arabidopsis tumors: a genome-wide approach. Plant Cell 18:3617–3634

    Article  PubMed  CAS  Google Scholar 

  • Fait A, Yellin A, Fromm H (2005) GABA shunt deficiencies and accumulation of reactive oxygen intermediates: insight from Arabidopsis mutants. FEBS Lett 579:415–420

    Article  PubMed  CAS  Google Scholar 

  • Fait A, Yellin A, Fromm H. (2006) GABA and GHB neurotransmitters in plants and animals. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants. Springer, Berlin, pp 170–185

    Google Scholar 

  • Ford Y-Y, Ratcliffe RG, Robins RJ (1996) Phytohormone-induced GABA production in transformed root cultures of Datura strammonium: an in vivo 15N NMR study. J Exp Bot 47:865–871

    Article  Google Scholar 

  • Girousse C, Bournoville R, Bonnemain J-L (1996) Water deficit-induced changes in concentrations of proline and some other amino acids in the phloem sap of alfalfa. Plant Physiol 111:109–113

    PubMed  CAS  Google Scholar 

  • Hall DE, MacGregor KB, Nijisse J, Bown AW (2004) Footsteps from insect larvae damage leaf surfaces and initiate rapid responses. Eur J Plant Pathol 110:441–447

    Article  CAS  Google Scholar 

  • Hansen ME, Sørensen H, Cantwell M (2001) Changes in acetaldehyde, ethanol and amino acids in broccoli florets during aire and controlled atmosphere storage. Postharv Biol Technol 22:227–237

    Article  CAS  Google Scholar 

  • Hoover GJ, Van Cauwenberghe OR, Breitkreuz KE, Clark SM, Merrill AR, Shelp BJ (2007a) Characteristics of an Arabidopsis glyoxylate reductase: general biochemical properties and substrate specificity for the recombinant protein, and developmental expression and implications for glyoxylate and succinic semialdehyde metabolism in planta. Can J Bot 85:883–895

    Article  CAS  Google Scholar 

  • Hoover GJ, Prentice GA, Merrill AR, Shelp BJ (2007b) Kinetic mechanism of an Arabidopsis glyoxylate reductase: studies of initial velocity, dead-end inhibition and product inhibition. Can J Bot 95:896–902

    Article  Google Scholar 

  • Kaplan F, Kopka J, Sung DY, Zhao W, Popp W, Porat R, Guy CL (2007) Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J 50:967–981

    Article  PubMed  CAS  Google Scholar 

  • Kathiresan A, Miranda J, Chinnapa CC, Reid DD (1998) γ-Aminobutyric acid promotes elongation in Stellaria longipes: the role of ethylene. Plant Growth Regul 26:131–137

    Article  CAS  Google Scholar 

  • Kato-Noguchi H, Ohashi C (2006) Effects of anoxia on amino acid levels in rice cotyledons. Plant Prod Sci 9:383–387

    Article  CAS  Google Scholar 

  • Kinnersley AM, Lin F (2000) Receptor modifiers indicate that 4-aminobutyric acid (GABA) is a potential modulator of ion transport in plants. Plant Growth Regul 32:65–76

    Article  CAS  Google Scholar 

  • Kinnersley AM, Turano FJ (2000) Gamma aminobutyric acid (GABA) and plant responses to stress. Crit Rev Plant Sci 19:479–509

    Article  CAS  Google Scholar 

  • Kisaka H, Kida T, Miwa T (2006) Antisense suppression of glutamate decarboxylase in tomato (Lycopersicon esculentum L.) results in accumulation of glutamate in transgenic tomato fruits. Plant Biotech 23:267–274

    Article  CAS  Google Scholar 

  • Klok EJ, Wilson IW, Wilson D, Chapman, SC, Ewing RM, Somerville SC, Peacock WJ, Dolferus R, Dennis ES (2002) Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. Plant Cell 14:2481–2494

    Article  PubMed  CAS  Google Scholar 

  • Lacombe B, Becker D, Hedrich R, DeSalle R, Hollmann M, Kwak JM, Schroeder JI, Le Novere N, Nam HG, Spalding EP, Tester M, Turano FJ, Chiu J, Coruzzi (2001) The identity of plant glutamate receptors. Science 292:1486–1487

    Article  PubMed  CAS  Google Scholar 

  • Lancien M, Roberts MR (2006) Regulation of Arabidopsis thaliana 14-3-3 gene expression by γ-aminobutyric acid. Plant Cell Environ 29:1430–1436

    Article  PubMed  CAS  Google Scholar 

  • MacGregor KB, Shelp BJ, Peiris SE, Bown AW (2003) Overexpression of glutamate decarboxylase in transgenic tobacco deters feeding by phytophagous insect larvae. J Chem Ecol 29:2177–2182

    Article  PubMed  CAS  Google Scholar 

  • Mamelak M (1989) Gammahydroxybutyrate: an endogenous regulator of energy metabolism. Neurosci Biobehav Rev 13:187–197

    Article  PubMed  CAS  Google Scholar 

  • Mayer R, Cheery J, Rhodes D (1990) Effect of heat shock on amino acid metabolism. Plant Physiol 94:796–810

    Article  PubMed  CAS  Google Scholar 

  • Mazzucotelli E, Tartari A, Cattivelli L, Forlani G (2006) Metabolism of γ-aminobutyric acid during cold acclimation and freezing and its relationship to frost tolerance in barley and wheat. J Exp Bot 57:3755–3766

    Article  PubMed  CAS  Google Scholar 

  • McLean MD, Yevtushenko DP, Deschene D, Van Cauwenberghe OR, Makhmoudova A, Potter JW, Bown AW, Shelp BJ (2003) Overexpression of glutamate decarboxylase in transgenic tobacco plants confers resistance to the northern root-knot nematode. Mol Breed 11:277–285

    Article  CAS  Google Scholar 

  • Merodio C, Muñoz MT, Del Cure B, Buitrango D, Escribano MI (1998) Effect of high CO2 on the titres of γ-aminobutyric acid, total polyamines and some pathogenesis-related proteins in cherimoya fruit stored at low temperature. J Exp Bot 49:1339–1347

    CAS  Google Scholar 

  • Meyer A, Eskandari S, Grallath S, Rentsch D (2006) AtGAT1, a high affinity transporter for γ-aminobutyric acid in Arabidopsis thaliana. J Biol Chem 281:7197–7204

    Article  PubMed  CAS  Google Scholar 

  • Miller RW, McRae DG, Joy K (1991) Glutamate and γ-aminobutyrate metabolism in isolated Rhizobium meliloti bacteroids. Mol Plant Microbes Interact 4:37–45

    Article  CAS  Google Scholar 

  • Mirabella R, Rauwerda H, Struys EA, Jakobs C, Triantaphylidès C, Haring MA, Schuurink RC (2008) The Arabidopsis her1 mutant implicates GABA in E-2-hexanal responsiveness. Plant J 53:197–213

    Article  PubMed  CAS  Google Scholar 

  • Miyashita Y, Good AG (2008) Contribution of the GABA shunt to hypoxia-induced alanine accumulation in roots of Arabidopsis thaliana. Plant Cell Physiol 49:92–102

    Article  PubMed  CAS  Google Scholar 

  • Morse DE, Hooker N, Duncan H, Jensen L (1979) γ-aminobutyric acid, a neurotransmitter, induces planktonic abalone larvae to settle and begin metamorphosis. Science 204:407–410

    Article  PubMed  CAS  Google Scholar 

  • Morse ANC, Morse DE (1984) Recruitment and metamorphosis of Haliotis larvae induced by molecules uniquely available at the surface of crustose red algae. J Exp Mar Biol Ecol 75:191–215

    Article  CAS  Google Scholar 

  • Oliver RP, Solomon PS (2004) Does the oxidative stress used by plants for defence provide a source of nutrients for pathogenic fungi?. Trends Plant Sci 9:472–473

    Article  PubMed  CAS  Google Scholar 

  • Palanivelu R, Brass L, Edlund AF, Preuss D (2003) Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114:47–59

    Article  PubMed  CAS  Google Scholar 

  • Pasentsis K, Falara V, Pateraki I, Gerasopoulos D, Kanellis AK (2007) Identification and expression profiling of low oxygen regulated genes from Citrus flavedo tissues using RT-PCR differential display. J Exp Bot 58:2203–2216

    Article  PubMed  CAS  Google Scholar 

  • Prell J, Boesten B, Poole P, Priefer UB (2002) The Rhizobium leguminosarum bv. viciae VF39 γ-aminobutyrate (GABA) aminotransferase gene (gabT) is induced by GABA and highly expressed in bacteroids. Microbiology 148:615–623

    PubMed  CAS  Google Scholar 

  • Ramputh A-I, Bown AW (1996) Rapid γ-aminobutyric acid synthesis and the inhibition of the growth and development of oblique-banded leaf-roller larvae. Plant Physiol 111:1349–1352

    PubMed  CAS  Google Scholar 

  • Reggiani R, Cantu CA, Brimballa I, Britani A (1988) Accumulation and interconversion of amino acids in rice roots under anoxia. Plant Cell Physiol 29:981–987

    CAS  Google Scholar 

  • Ricoult C, Cliquet J-B, Limami AM (2005) Stimulation of alanine amino transferase (AlaAT) gene expression and alanine accumulation in embryo axis of the model legume Medicago truncatula contribute to anoxia stress tolerance. Physiol Plant 123:30–39

    Article  CAS  Google Scholar 

  • Secor J, Schrader LE (1985) Amino acid efflux from cells and leaf discs. In: Shibles R (ed) World Soybean Conference III: Proceedings. Westview, Boulder, CO, pp 749–758

    Google Scholar 

  • Serraj R, Shelp BJ, Sinclair TR (1998) Accumulation of γ-aminobutyric acid in nodulated soybean in response to drought stress. Physiol Plant 102:79–86

    Article  CAS  Google Scholar 

  • Shelp BJ, Walton CS, Snedden WA, Tuin LG, Oresnik IJ, Layzell DB (1995) GABA shunt in developing soybean seeds is associated with hypoxia. Physiol Plant 94:219–228

    Article  CAS  Google Scholar 

  • Shelp BJ, Bown AW, McLean MD (1999) Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci 4:446–452

    Article  PubMed  Google Scholar 

  • Shelp BJ, Bown AW, Faure D (2006) Extracellular γ-aminobutyrate mediates communication between plants and other organisms. Plant Physiol 142:1350–1352

    Article  PubMed  CAS  Google Scholar 

  • Simpson JP, Di Leo R, Dhanoa PK, Allan WL, Makhmoudova A, Clark SM, Hoover GJ, Mullen RT, Shelp BJ (2008) Identification and characterization of a plastid-localized Arabidopsis glyoxylate reductase isoform: comparison with a cytosolic isoform and implications for cellular redox homeostasis and aldehyde detoxification. J Exp Bot 59(9):2545–2554

    Article  PubMed  CAS  Google Scholar 

  • Solomon PS, Oliver RP (2001) The nitrogen content of the tomato leaf apoplast increases during infection by Cladosporium fulvum. Planta 213:241–249

    Article  PubMed  CAS  Google Scholar 

  • Solomon PS, Oliver RP (2002) Evidence that γ-aminobutyric acid is a major nitrogen source during Cladosporium fulvum infection of tomato. Planta 214:414–420

    Article  PubMed  CAS  Google Scholar 

  • Trapido-Rosenthal HG, Morse DE (1986) Availability of chemosensory receptors is down-regulated by habituation of larvae to a morphogenetic signal. Proc Natl Acad Sci USA 83:7658–7662

    Article  PubMed  CAS  Google Scholar 

  • Tsishida T, Murai T (1987) Conversion of glutamic acid to γ-aminobutyric acid in tea leaves under anaerobic conditions. Agric Biol Chem 51:2805–2871

    Article  Google Scholar 

  • Valle EM, Boggio SB, Heldt HW (1998) Free amino acid composition of phloem sap and growing fruit of Lycopersicon esculentum. Plant Cell Physiol 39:458–461

    Article  CAS  Google Scholar 

  • Van Cauwenberghe OR, Shelp BJ (1999) Biochemical characterization of partially purified GABA: pyruvate transaminase from Nicotiana tabacum. Phytochemistry 52:575–581

    Article  CAS  Google Scholar 

  • Van Cauwenberghe OR, Makhmoudova A, McLean MD, Clark SM, Shelp BJ (2002) Plant pyruvate-dependent gamma-aminobutyrate transaminase: identification of an Arabidopsis cDNA and its expression in Escherichia coli. Can J Bot 80:933–941

    Article  CAS  Google Scholar 

  • Vance CP, Heichel GH (1991) Carbon in N2 fixation: limitation or exquisite adaptation. Annu Rev Plant Physiol Plant Mol Biol 42:373–392

    Article  CAS  Google Scholar 

  • Wallace W, Secor J, Schrader LE (1984) Rapid accumulation of gamma-aminobutyric acid and alanine in soybean leaves in response to an abrupt transfer to lower temperature, darkness, or mechanical manipulation. Plant Physiol 75:170–175

    Article  PubMed  CAS  Google Scholar 

  • Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Philos Trans R Soc Lond 355:1517–1529

    Article  CAS  Google Scholar 

  • Wu C, Zhou S, Zhang Q, Zhao W, Peng Y (2006) Molecular cloning and differential expression of an γ-aminobutyrate transaminase gene, OsGABA-T, in rice (Oryza sativa) leaves infected with blast fungus. J Plant Res 119:663–669

    Article  PubMed  CAS  Google Scholar 

  • Yevtushenko D, McLean MD, Peiris SE, Van Cauwenberghe OR, Shelp BJ (2003) Calcium/calmodulin activation of two divergent glutamate decarboxylases from tobacco. J Exp Bot 54:2001–2002

    Article  PubMed  CAS  Google Scholar 

  • Yu G, Liang J, He Z, Sun M (2006) Quantum dot-mediated detection of γ-aminobutyric acid binding sites on the surface of living pollen protoplasts in tobacco. Chem Biol 13:723–731

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge research support from the Natural Science and Engineering Research Council of Canada and the Ontario Ministry of Agriculture and Food to B.J.S., and the Centre National de la Recherche Scientifique to D.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry J. Shelp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shelp, B.J., Allan, W.L., Faure, D. (2009). Role of g -Aminobutyrate and g -Hydroxybutyrate in Plant Communication. In: Balu¿ka, F. (eds) Plant-Environment Interactions. Signaling and Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89230-4_4

Download citation

Publish with us

Policies and ethics