Skip to main content

Fairing of Discrete Surfaces with Boundary That Preserves Size and Qualitative Shape

  • Conference paper
Advances in Visual Computing (ISVC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5358))

Included in the following conference series:

  • 2365 Accesses

Abstract

In this paper, we propose a new algorithm for fairing discrete surfaces resulting from stereo-based 3D reconstruction task. Such results are typically too dense, uneven and noisy, which is inconvenient for further processing. Our approach jointly optimises mesh smoothness and regularity. The definition is given on a discrete surface and the solution is found by discrete diffusion of a scalar function. Experiments on synthetic and real data demonstrate that the proposed approach is robust, stable, preserves qualitative shape and is applicable to even moderate-size real surfaces with boundary (0.8M vertices and 1.7M triangles).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nistér, D.: Automatic dense reconstruction from uncalibrated video sequences. PhD thesis, Royal Institute of Technology KTH, Stockholm, Sweden (2001)

    Google Scholar 

  2. Strecha, C., Tuytelaars, T., van Gool, L.: Dense matching of multiple wide-baseline views. In: Proceedings International Conference on Computer Vision, pp. 1194–1201 (2003)

    Google Scholar 

  3. Kamberov, G., et al.: 3D geometry from uncalibrated images. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J., Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4292, pp. 802–813. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Duan, Y., Qin, H.: A novel modeling algorithm for shape recovery of unknown topology. In: Proceedings International Conference on Computer Vision (ICCV 2001), pp. 402–411 (2001)

    Google Scholar 

  5. Dyn, N., Hormann, K., Kim, S., Levin, D.: Optimizing 3D triangulations using discrete curvature analysis. In: Mathematical Methods for Curves and Surfaces, pp. 135–146 (2001)

    Google Scholar 

  6. Kobbelt, L.P.: Discrete fairing and variational subdivision for freeform surface design. The Visual Computer 16, 142–158 (2000)

    Article  Google Scholar 

  7. Taubin, G.: A signal processing approach to fair surface design. In: Proceedings of the SIGGRAPH 1995, pp. 351–358 (1995)

    Google Scholar 

  8. Schneider, R., Kobbelt, L.: Geometric fairing of irregular meshes for free-form surface design. Computer Aided Geometric Design 18, 359–379 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceedings of the SIGGRAPH 1999, pp. 317–324 (1999)

    Google Scholar 

  10. Surazhsky, T., Magid, E., Soldea, O., Elber, G., Rivlin, E.: A comparison of gaussian and mean curvatures estimation methods on triangular meshes. In: IEEE International Conference on Robotics and Automation 2003 (ICRA 2003), pp. 1021–1026 (2003)

    Google Scholar 

  11. Delingette, H.: Simplex meshes: a general representation for 3D shape reconstruction. Research Report 2214, INRIA, Sophia Antipolis (1994)

    Google Scholar 

  12. Yagou, H., Ohtake, Y., Belyaev, A.: Mesh smoothing via mean and median filtering applied to face normals. In: Geometric Modeling and Processing, pp. 124–131 (2002)

    Google Scholar 

  13. Mashiko, T., Yagou, H., Wei, D., Ding, Y., Wu, G.: 3D triangle mesh smoothing via adaptive MMSE filtering. In: Int. Conf. on Computer and Information Technology, pp. 734–740 (2004)

    Google Scholar 

  14. Jones, T.R., Durand, F., Desbrun, M.: Non-iterative, feature-preserving mesh smoothing. In: Proceedings of the SIGGRAPH 2003, pp. 943–949 (2003)

    Google Scholar 

  15. Escobar, J.M., Montero, G., Montenegro, R., Rodríguez, E.: An algebraic method for smoothing surface triangulations on a local parametric space. International Journal for Numerical Methods in Engineering 66, 740–760 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kostlivá, J., Šára, R., Matýsková, M.: Inflection point preserving fairing of discrete surfaces with boundary. Research Report CTU–CMP–2008–19, Center for Machine Perception, K13133 FEE Czech Technical University, Prague, Czech Republic (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kostlivá, J., Šára, R., Matýsková, M. (2008). Fairing of Discrete Surfaces with Boundary That Preserves Size and Qualitative Shape. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89639-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89639-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89638-8

  • Online ISBN: 978-3-540-89639-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics