Skip to main content

Microneedle-Based Vaccines

  • Chapter
  • First Online:
Vaccines for Pandemic Influenza

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 333))

Abstract

The threat of pandemic influenza and other public health needs motivate the development of better vaccine delivery systems. To address this need, microneedles have been developed as micron-scale needles fabricated using low-cost manufacturing methods that administer vaccine into the skin using a simple device that may be suitable for self-administration. Delivery using solid or hollow microneedles can be accomplished by (1) piercing the skin and then applying a vaccine formulation or patch onto the permeabilized skin, (2) coating or encapsulating vaccine onto or within microneedles for rapid, or delayed, dissolution and release in the skin, and (3) injection into the skin using a modified syringe or pump. Extensive clinical experience with smallpox, TB, and other vaccines has shown that vaccine delivery into the skin using conventional intradermal injection is generally safe and effective and often elicits the same immune responses at lower doses compared to intramuscular injection. Animal experiments using microneedles have shown similar benefits. Microneedles have been used to deliver whole, inactivated virus; trivalent split antigen vaccines; and DNA plasmids encoding the influenza hemagglutinin to rodents, and strong antibody responses were elicited. In addition, ChimeriVaxTM-JE against yellow fever was administered to nonhuman primates by microneedles and generated protective levels of neutralizing antibodies that were more than seven times greater than those obtained with subcutaneous delivery; DNA plasmids encoding hepatitis B surface antigen were administered to mice and antibody and T cell responses at least as strong as hypodermic injections were generated; recombinant protective antigen of Bacillus anthracis was administered to rabbits and provided complete protection from lethal aerosol anthrax spore challenge at a lower dose than intramuscular injection; and DNA plasmids encoding four vaccinia virus genes administered to mice in combination with electroporation generated neutralizing antibodies that apparently included both Th1 and Th2 responses. Dose sparing with microneedles was specifically studied in mice with the model vaccine ovalbumin. At low dose (1 μg), specific antibody titers from microneedles were one order of magnitude greater than subcutaneous injection and two orders of magnitude greater than intramuscular injection. At higher doses, antibody responses increased for all delivery methods. At the highest levels (20–80 μg), the route of administration had no significant effect on the immune response. Concerning safety, no infections or other serious adverse events have been observed in well over 1,000 microneedle insertions in human and animal subjects. Bleeding generally does not occur for short microneedles (<1 mm). Highly localized, mild, and transient erythema is often observed. Microneedle pain has been reported as nonexistent to mild, and always much less than a hypodermic needle control. Overall, these studies suggest that microneedles may provide a safe and effective method of delivering vaccines with the possible added attributes of requiring lower vaccine doses, permitting low-cost manufacturing, and enabling simple distribution and administration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams D, Quayum M, Worthington T, Lambert P, Elliott T (2005) Evaluation of a 2% chlorhexidine gluconate in 70% isopropyl alcohol skin disinfectant. J Hosp Infect 61:287–290

    Article  CAS  PubMed  Google Scholar 

  • Alarcon JB, Hartley AW, Harvey NG, Mikszta JA (2007) Preclinical evaluation of microneedle technology for intradermal delivery of influenza vaccines. Clin Vaccine Immunol 14:375–381

    Article  CAS  PubMed  Google Scholar 

  • Andersen KE, Boman A, Volund A, Wahlberg JE (1985) Induction of formaldehyde contact sensitivity: dose response relationship in the guinea pig maximization test. Acta Derm Venereol 65:472–478

    CAS  PubMed  Google Scholar 

  • Atkinson WL, Pickering LK, Schwartz B, Weniger BG, Iskander JK, Watson JC (2002) General recommendations on immunization. Recommendations of the Advisory Committee on Immunization Practices (ACIP) and the American Academy of Family Physicians (AAFP). MMWR Recomm Rep 51:1–35

    PubMed  Google Scholar 

  • Auewarakul P, Kositanont U, Sornsathapornkul P, Tothong P, Kanyok R, Thongcharoen P (2007) Antibody responses after dose-sparing intradermal influenza vaccination. Vaccine 25:659–663

    Article  CAS  PubMed  Google Scholar 

  • Barker JH, Ryan TJ (1995) Skin microcirculation In: Barker JH, Anderson GL, Menger MD (eds) Clinically applied microcirculation research. CRC, Boca Raton, pp 315–338

    Google Scholar 

  • Belshe RB, Newman FK, Cannon J, Duane C, Treanor J, Van Hoecke C, Howe BJ, Dubin G (2004) Serum antibody responses after intradermal vaccination against influenza. N Engl J Med 351:2286–2294

    Article  CAS  PubMed  Google Scholar 

  • Belshe RB, Newman FK, Wilkins K, Graham IL, Babusis E, Ewell M, Frey SE (2007) Comparative immunogenicity of trivalent influenza vaccine administered by intradermal or intramuscular route in healthy adults. Vaccine 25:6755–6763

    Article  CAS  PubMed  Google Scholar 

  • Birchall J, Coulman S, Pearton M, Allender C, Brain K, Anstey A, Gateley C, Wilke N, Morrissey A (2005) Cutaneous DNA delivery and gene expression in ex vivo human skin explants via wet-etch micro-fabricated micro-needles. J Drug Target 13:415–421

    Article  CAS  PubMed  Google Scholar 

  • Birchall JC (2006) Microneedle array technology: the time is right but is the science ready? Expert Rev Med Devices 3:1–4

    Article  PubMed  Google Scholar 

  • Bronaugh RL, Maibach HI (2005) Percutaneous absorption. Marcel Dekker, New York

    Google Scholar 

  • Brown H, Kasel JA, Freeman DM, Moise LD, Grose NP, Couch RB (1977) The immunizing effect of influenza A/New Jersey/76 (Hsw1N1) virus vaccine administered intradermally and intramuscularly to adults. J Infect Dis 136(suppl):S466–S471

    PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (CDC) (2007) Progress toward interruption of wild poliovirus transmission worldwide, January 2006–May 2007. MMWR Morb Mortal Wkly Rep 56:682–685

    Google Scholar 

  • Chabri F, Bouris K, Jones T, Barrow D, Hann A, Allender C, Brain K, Birchall J (2004) Microfabricated silicon microneedles for nonviral cutaneous gene delivery. Br J Dermatol 150:869–877

    Article  CAS  PubMed  Google Scholar 

  • Chiu SS, Peiris JS, Chan KH, Wong WH, Lau YL (2007) Immunogenicity and safety of intradermal influenza immunization at a reduced dose in healthy children. Pediatrics 119:1076–1082

    Article  PubMed  Google Scholar 

  • Cormier M, Daddona PE (2003) Macroflux technology for transdermal delivery of therapeutic proteins and vaccines. In: Rathbone MJ, Hadgraft J, Roberts MS (eds) Modified-release drug delivery technology. Marcel Dekker, New York, pp 589–598

    Google Scholar 

  • Cormier M, Johnson B, Ameri M, Nyam K, Libiran L, Zhang DD, Daddona P (2004) Transdermal delivery of desmopressin using a coated microneedle array patch system. J Control Release 97:503–511

    CAS  PubMed  Google Scholar 

  • Coulman S, Allender C, Birchall J (2006a) Microneedles and other physical methods for overcoming the stratum corneum barrier for cutaneous gene therapy. Crit Rev Ther Drug Carrier Syst 23:205–258

    CAS  Google Scholar 

  • Coulman SA, Barrow D, Anstey A, Gateley C, Morrissey A, Willke N, Allender C, Brain K, Birchall JC (2006b) Minimally invasive delivery of macromolecules and plasmid DNA via microneedles. Curr Drug Deliv 3:65–75

    Article  CAS  Google Scholar 

  • Davis SP, Landis BJ, Adams ZH, Allen MG, Prausnitz MR (2004) Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. J Biomech 37:1155–1163

    Article  PubMed  Google Scholar 

  • Davis SP, Martanto W, Allen MG, Prausnitz MR (2005) Transdermal insulin delivery to diabetic rats through microneedles. IEEE Trans Biomed Eng 52:909–915

    Article  PubMed  Google Scholar 

  • Dean CH, Alarcon JB, Waterston AM, Draper K, Early R, Guirakhoo F, Monath TP, Mikszta JA (2005) Cutaneous delivery of a live, attenuated chimeric flavivirus vaccine against Japanese encephalitis (ChimeriVax-JE) in non-human primates. Hum Vaccin 1:106–111

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Ortega JL, Forsey T, Clements CJ, Milstien J (1994) The relationship between dose and response of standard measles vaccines. Biologicals 22:35–44

    Article  CAS  PubMed  Google Scholar 

  • Ellner PD (1998) Smallpox: gone but not forgotten. Infection 26:263–269

    Article  CAS  PubMed  Google Scholar 

  • Fauci AS (2006) Pandemic influenza threat and preparedness. Emerg Infect Dis 12:73–77

    PubMed  Google Scholar 

  • Freking K (2005) Health News: HHS may use mail to deliver emergency meds. http://www.health-news.org/breaking/2885/hhs-may-use-mail-to-deliver-emergency-meds.html Accessed 30 Oct 2007

  • Gardeniers JGE, Luttge R, Berenschot JW, de Boer MJ, Yeshurun Y, Hefetz M, van ‘t Oever R, van den Berg A (2003) Silicon micromachined hollow microneedles for transdermal liquid transport. J MEMS 6:855–862

    Google Scholar 

  • Gill HS, Prausnitz MR (2007a) Coated microneedles for transdermal delivery. J Control Release 117:227–237

    Article  CAS  Google Scholar 

  • Gill HS, Prausnitz MR (2007b) Coating formulations for microneedles. Pharm Res 24:1369–1380

    Article  CAS  Google Scholar 

  • Gill HS, Prausnitz MR (2008) Pocketed microneedles for drug delivery to the skin. J Phys Chem Solids 69:1537–1541

    Article  CAS  Google Scholar 

  • Gill HS, Denson DD, Burris B, Prausnitz MR (2008) Effect of microneedle design on pain in human subjects Clin J Pain 24:585–594

    Article  PubMed  Google Scholar 

  • Gostin LO (2006) Medical countermeasures for pandemic influenza: ethics and the law. JAMA 295:554–556

    Article  CAS  PubMed  Google Scholar 

  • Halperin W, Weiss WI, Altman R, Diamond MA, Black KJ, Iaci AW, Black HC, Goldfield M (1979) A comparison of the intradermal and subcutaneous routes of influenza vaccination with A/New Jersey/76 (swine flu) and A/Victoria/75: report of a study and review of the literature. Am J Public Health 69:1247–1251

    Article  CAS  PubMed  Google Scholar 

  • Henry S, McAllister DV, Allen MG, Prausnitz MR (1998) Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci 87:922–925

    Article  CAS  PubMed  Google Scholar 

  • Herbert FA, Larke RP, Markstad EL (1979) Comparison of responses to influenza A/New Jersey/76-A/Victoria/75 virus vaccine administered intradermally or subcutaneously to adults with chronic respiratory disease. J Infect Dis 140:234–238

    CAS  PubMed  Google Scholar 

  • Hooper JW, Golden JW, Ferro AM, King AD (2007) Smallpox DNA vaccine delivered by novel skin electroporation device protects mice against intranasal poxvirus challenge. Vaccine 25:1814–1823

    Article  CAS  PubMed  Google Scholar 

  • Huang CM (2007) Topical vaccination: the skin as a unique portal to adaptive immune responses. Semin Immunopathol 29:71–80

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Hagiwara E, Saeki A, Sugioka N, Takada K (2006a) Feasibility of microneedles for percutaneous absorption of insulin. Eur J Pharm Sci 29:82–88

    Article  CAS  Google Scholar 

  • Ito Y, Yoshimitsu J, Shiroyama K, Sugioka N, Takada K (2006b) Self-dissolving microneedles for the percutaneous absorption of EPO in mice. J Drug Target 14:255–261

    Article  CAS  Google Scholar 

  • Kaushik S, Hord AH, Denson DD, McAllister DV, Smitra S, Allen MG, Prausnitz MR (2001) Lack of pain associated with microfabricated microneedles. Anesth Analg 92:502–504

    Article  CAS  PubMed  Google Scholar 

  • Kenney RT, Frech SA, Muenz LR, Villar CP, Glenn GM (2004) Dose sparing with intradermal injection of influenza vaccine. N Engl J Med 351:2295–2301

    Article  CAS  PubMed  Google Scholar 

  • La Montagne JR, Fauci AS (2004) Intradermal influenza vaccination—can less be more? N Engl J Med 351:2330–2332

    Article  CAS  PubMed  Google Scholar 

  • Lambert P-H, Laurent PE (2008) Intradermal vaccine delivery: will new delivery systems transform vaccine administration? Vaccine 26:3197–3208

    Article  CAS  PubMed  Google Scholar 

  • Larregina AT, Falo LD Jr (2005) Changing paradigms in cutaneous immunology: adapting with dendritic cells. J Invest Dermatol 124:1–12

    Article  CAS  PubMed  Google Scholar 

  • Laurent PE, Bonnet S, Alchas P, Regolini P, Mikszta JA, Pettis R, Harvey NG (2007) Evaluation of the clinical performance of a new intradermal vaccine administration technique and associated delivery system. Vaccine 25:8833–8842

    Article  CAS  PubMed  Google Scholar 

  • Lee J-W, Park J-H, Prausnitz MR (2008) Dissolving microneedles for transdermal drug delivery. Biomaterials 29:2113–2124

    Article  CAS  PubMed  Google Scholar 

  • Lin W, Cormier M, Samiee A, Griffin A, Johnson B, Teng C, Hardee GE, Daddona P (2001) Transdermal delivery of antisense oligonucleotides with microprojection patch (Macroflux) technology. Pharm Res 18:1789–1793

    Article  CAS  PubMed  Google Scholar 

  • Lowry PW, Sabella C, Koropchak CM, Watson BN, Thackray HM, Abbruzzi GM, Arvin AM (1993) Investigation of the pathogenesis of varicella-zoster virus infection in guinea pigs by using polymerase chain reaction. J Infect Dis 167:78–83

    CAS  PubMed  Google Scholar 

  • Maa Y-F, Sellers S, Matriano J, Ramdas A (2005) Apparatus and method for transdermal delivery of influenza vaccine. US Pat Appl 20050220854

    Google Scholar 

  • Martanto W, Davis S, Holiday N, Wang J, Gill H, Prausnitz M (2004) Transdermal delivery of insulin using microneedles in vivo. Pharm Res 21:947–952

    Article  CAS  PubMed  Google Scholar 

  • Martanto W, Moore JS, Couse T, Prausnitz MR (2006a) Mechanism of fluid infusion during microneedle insertion and retraction. J Control Release 112:357–361

    Article  CAS  Google Scholar 

  • Martanto W, Moore JS, Kashlan O, Kamath R, Wang PM, O’Neal JM, Prausnitz MR (2006b) Microinfusion using hollow microneedles. Pharm Res 23:104–113

    Article  CAS  Google Scholar 

  • Matriano JA, Cormier M, Johnson J, Young WA, Buttery M, Nyam K, Daddona PE (2002) Macroflux microprojection array patch technology: a new and efficient approach for intracutaneous immunization. Pharm Res 19:63–70

    Article  CAS  PubMed  Google Scholar 

  • McAllister DV, Allen MG, Prausnitz MR (2000) Microfabricated microneedles for gene and drug delivery. Annu Rev Biomed Eng 2:289–313

    Article  CAS  PubMed  Google Scholar 

  • McAllister DV, Wang PM, Davis SP, Park J-H, Canatella PJ, Allen MG, Prausnitz MR (2003) Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci USA 100:13755–13760

    Article  CAS  PubMed  Google Scholar 

  • Mikszta JA, Alarcon JB, Brittingham JM, Sutter DE, Pettis RJ, Harvey NG (2002) Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat Med 8:415–419

    Article  CAS  PubMed  Google Scholar 

  • Mikszta JA, Sullivan VJ, Dean C, Waterston AM, Alarcon JB, Dekker JP 3rd, Brittingham JM, Huang J, Hwang CR, Ferriter M, Jiang G, Mar K, Saikh KU, Stiles BG, Roy CJ, Ulrich RG, Harvey NG (2005) Protective immunization against inhalational anthrax: a comparison of minimally invasive delivery platforms. J Infect Dis 191:278–288

    Article  CAS  PubMed  Google Scholar 

  • Mikszta JA, Dekker JP 3rd, Harvey NG, Dean CH, Brittingham JM, Huang J, Sullivan VJ, Dyas B, Roy CJ, Ulrich RG (2006) Microneedle-based intradermal delivery of the anthrax recombinant protective antigen vaccine. Infect Immun 74:6806–6810

    Article  CAS  PubMed  Google Scholar 

  • Miyano T, Tobinaga Y, Kanno T, Matsuzaki Y, Takeda H, Wakui M, Hanada K (2005) Sugar micro needles as transdermic drug delivery system. Biomed Microdevices 7:185–188

    Article  CAS  PubMed  Google Scholar 

  • Miyauchi H, Horio T (1992) A new animal model for contact dermatitis: the hairless guinea pig. J Dermatol 19:140–145

    CAS  PubMed  Google Scholar 

  • Monath TP (2005) Yellow fever vaccine. Expert Rev Vaccines 4:553–574

    Article  CAS  PubMed  Google Scholar 

  • Monath TP, Guirakhoo F, Nichols R, Yoksan S, Schrader R, Murphy C, Blum P, Woodward S, McCarthy K, Mathis D, Johnson C, Bedford P (2003) Chimeric live, attenuated vaccine against Japanese encephalitis (ChimeriVax-JE): phase 2 clinical trials for safety and immunogenicity, effect of vaccine dose and schedule, and memory response to challenge with inactivated Japanese encephalitis antigen. J Infect Dis 188:1213–1230

    Article  PubMed  Google Scholar 

  • Nestle FO, Nickoloff BJ (2007) Deepening our understanding of immune sentinels in the skin. J Clin Invest 117:2382–2385

    Article  CAS  PubMed  Google Scholar 

  • Nordquist L, Roxhed N, Griss P, Stemme G (2007) Novel microneedle patches for active insulin delivery are efficient in maintaining glycaemic control: an initial comparison with subcutaneous administration. Pharm Res 24:1381–1388

    Article  CAS  PubMed  Google Scholar 

  • O’Hagan DT, Rappuoli R (2004) Novel approaches to vaccine delivery. Pharm Res 21:1519–1530

    Article  PubMed  Google Scholar 

  • Park J-H, Allen MG, Prausnitz MR (2005) Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release 104:51–66

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Allen MG, Prausnitz MR (2006) Polymer microneedles for controlled-release drug delivery. Pharm Res 23:1008–1019

    Article  CAS  PubMed  Google Scholar 

  • Pearton M, Allender C, Brain K, Anstey A, Gateley C, Wilke N, Morrissey A, Birchall J (2008) Gene delivery to the epidermal cells of human skin explants using microfabricated microneedles and hydrogel formulations. Pharm Res 25(2):407–416

    Article  CAS  PubMed  Google Scholar 

  • Pickup DJ (2007) Understanding orthopoxvirus interference with host immune responses to inform novel vaccine design. Expert Rev Vaccines 6:87–95

    Article  CAS  PubMed  Google Scholar 

  • Prausnitz MR (2004) Microneedles for transdermal drug delivery. Adv Drug Deliv Rev 56:581–587

    Article  CAS  PubMed  Google Scholar 

  • Prausnitz M (2005) Assessment of microneedles for transdermal drug delivery. In: Bronaugh R, Maibach H (eds) Percutaneous absorption. Marcel Dekker, New York, pp 497–507

    Google Scholar 

  • Prausnitz M, Ackley D, Gyory J (2003) Microneedles for transdermal drug delivery. In: Rathbone M, Hadgraft J, Roberts M (eds) Modified release drug delivery systems. Marcel Dekker, New York, pp 513–522

    Google Scholar 

  • Prausnitz MR, Langer R (2008) Transdermal drug delivery. Nat Biotech 26:1261–1268

    Article  CAS  Google Scholar 

  • Prausnitz M, Mikszta J, Raeder-Devens J (2005) Microneedles. In: Smith E, Maibach H (eds) Percutaneous penetration enhancers. CRC, Boca Raton, FL, pp 239–255

    Google Scholar 

  • Prausnitz MR, Gill HS, Park J-H (2008) Microneedles for drug delivery. In: Rathbone MJ, Hadgraft J, Roberts MS, Lane ME (eds) Modified release drug delivery. Informa Healthcare, New York

    Google Scholar 

  • Reed ML, Lye W-K (2004) Microsystems for drug and gene delivery. Proc IEEE 92:56–75

    Article  CAS  Google Scholar 

  • Roth RR, James WD (1989) Microbiology of the skin: resident flora, ecology, infection. J Am Acad Dermatol 20:367–390

    Article  CAS  PubMed  Google Scholar 

  • Ruble DL, Elliott JJ, Waag DM, Jaax GP (1994) A refined guinea pig model for evaluating delayed-type hypersensitivity reactions caused by Q fever vaccines. Lab Anim Sci 44:608–612

    CAS  PubMed  Google Scholar 

  • Shirkhanzadeh M (2005) Microneedles coated with porous calcium phosphate ceramics: effective vehicles for transdermal delivery of solid trehalose. J Mater Sci Mater Med 16:37–45

    Article  CAS  PubMed  Google Scholar 

  • Sivamani RK, Stoeber B, Wu GC, Zhai H, Liepmann D, Maibach H (2005) Clinical microneedle injection of methyl nicotinate: stratum corneum penetration. Skin Res Technol 11:152–156

    Article  PubMed  Google Scholar 

  • Sivamani RK, Liepmann D, Maibach HI (2007) Microneedles and transdermal applications. Expert Opin Drug Deliv 4:19–25

    Article  CAS  PubMed  Google Scholar 

  • Subbarao K, Murphy BR, Fauci AS (2006) Development of effective vaccines against pandemic influenza. Immunity 24:5–9

    Article  CAS  PubMed  Google Scholar 

  • Sullivan SP, Murthy N, Prausnitz MR (2008) Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Adv Mat 20:933–938

    Article  CAS  Google Scholar 

  • Teo MA, Shearwood C, Ng KC, Lu J, Moochhala S (2005) In vitro and in vivo characterization of MEMS microneedles. Biomed Microdevices 7:47–52

    Article  PubMed  Google Scholar 

  • Thomson PDR (2007) Physicians’ desk reference. Thomson PDR, Montvale

    Google Scholar 

  • Ulmer JB, Valley U, Rappuoli R (2006) Vaccine manufacturing: challenges and solutions. Nat Biotechnol 24:1377–1383

    Article  CAS  PubMed  Google Scholar 

  • Verbaan FJ, Bal SM, van den Berg DJ, Groenink WH, Verpoorten H, Luttge R, Bouwstra JA (2007) Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin. J Control Release 117:238–245

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Cornwell M, Prausnitz M (2005) Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using glass microneedles. Diabetes Technol Ther 7:131–141

    Article  CAS  PubMed  Google Scholar 

  • Wang PM, Cornwell M, Hill J, Prausnitz MR (2006) Precise microinjection into skin using hollow microneedles. J Invest Dermatol 126:1080–1087

    Article  CAS  PubMed  Google Scholar 

  • Webby RJ, Webster RG (2003) Are we ready for pandemic influenza? Science 302:1519–1522

    Article  CAS  PubMed  Google Scholar 

  • Weniger BG, Papania M (2008) Alternative vaccine delivery methods. In: Plotkn S, Orenstein W, Offit P (eds) Vaccines. Elsevier, Philadelphia

    Google Scholar 

  • Widera G, Johnson J, Kim L, Libiran L, Nyam K, Daddona PE, Cormier M (2006) Effect of delivery parameters on immunization to ovalbumin following intracutaneous administration by a coated microneedle array patch system. Vaccine 24:1653–1664

    Article  CAS  PubMed  Google Scholar 

  • Wiser I, Balicer RD, Cohen D (2007) An update on smallpox vaccine candidates and their role in bioterrorism related vaccination strategies. Vaccine 25:976–984

    Article  CAS  PubMed  Google Scholar 

  • Woodward DF, Nieves AL, Williams LS, Spada CS, Hawley SB, Duenes JL (1989) A new hairless strain of guinea pig: characterization of the cutaneous morphology and pharmacology. In: Maibach HI, Lowe NJ (eds) Models in dermatology. Karger, Basel, pp 71–78

    Google Scholar 

  • Wu XM, Todo H, Sugibayashi K (2006) Effects of pretreatment of needle puncture and sandpaper abrasion on the in vitro skin permeation of fluorescein isothiocyanate (FITC)-dextran. Int J Pharm 316:102–108

    Article  CAS  PubMed  Google Scholar 

  • Wu XM, Todo H, Sugibayashi K (2007) Enhancement of skin permeation of high molecular compounds by a combination of microneedle pretreatment and iontophoresis. J Control Release 118:189–195

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Xu B, Gao Y (2005) Controlled transdermal delivery of model drug compounds by MEMS microneedle array. Nanomedicine 1:184–190

    CAS  PubMed  Google Scholar 

  • Yang M, Zahn JD (2004) Microneedle insertion force reduction using vibratory actuation. Biomed Microdevices 6:177–182

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Georgia Research Alliance and National Institutes of Health grants 1U01AI074579 and 1R01EB006369. Mark Prausnitz is the Emerson-Lewis Faculty Fellow and is a member of the Center for Drug Design, Development, and Delivery and the Institute for Bioengineering and Biosciences at the Georgia Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Prausnitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prausnitz, M.R., Mikszta, J.A., Cormier, M., Andrianov, A.K. (2009). Microneedle-Based Vaccines. In: Compans, R., Orenstein, W. (eds) Vaccines for Pandemic Influenza. Current Topics in Microbiology and Immunology, vol 333. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92165-3_18

Download citation

Publish with us

Policies and ethics