Skip to main content

Patient-ventilator Interaction during Noninvasive Ventilation

  • Chapter
Yearbook of Intensive Care and Emergency Medicine

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 2009))

Abstract

Over the years, non-invasive ventilation (NIV) has evolved into becoming a standard of care in both hypercapnic and non-hypercapnic acute respiratory failure [13]. However, its success in avoiding intubation is largely determined by patient tolerance to the technique [4]. The optimal combination of the patient’s spontaneous breathing activity and the ventilator’s set parameters, known as ’patient-ventilator interaction’, depends on numerous factors, and can prove very difficult to achieve [5, 6]. If patient ventilator asynchrony is present, the work of breathing can increase [5, 6]. Further complicating the matter, leaks at the patient-mask interface during NIV can interfere with various aspects of ventilator function, thereby increasing the risk of patient-ventilator asynchrony [710]. As an illustration, a recent study documented that severe asynchrony was present in 43 % of patients undergoing NIV for acute respiratory failure [11]. Consequently, when applying NIV the clinician must pay close attention to both the proper setting of ventilator parameters and the avoidance of excessive leaks at the patient-mask interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Peter J, Moran J, Hughes J (2002) Noninvasive mechanical ventilation in acute respiratory failure-a meta-analysis update. Crit Care Med 30: 555–562

    Article  PubMed  Google Scholar 

  2. Liesching T, Kwok H, Hill N (2003) Acute applications of noninvasive positive pressure ventilation. Chest 124: 699–713

    Article  PubMed  Google Scholar 

  3. Ferrer M, Esquinas A, Leon M, Gonzalez G, Alarcon A, Torres A (2003) Noninvasive ventilation in severe hypoxemic respiratory failure. Am J Respir Crit Car Med 168: 1438–1444

    Article  Google Scholar 

  4. Carlucci A, Richard J, Wysocki M, Lepage E, Brochard L (2001) Noninvasive versus conventional mechanical ventilation. An epidemiologic survey. Am J Respir Crit Care Med 163: 874–880

    PubMed  CAS  Google Scholar 

  5. Tobin M, Jubran A, Laghi F (2001) Patient-ventilator interaction. Am J Respir Crit Care Med 163: 1059–1063

    PubMed  CAS  Google Scholar 

  6. Kondili E, Prinianakis G, Georgopoulos D (2003) Patient-ventilator interaction. Br J Anaesth 91: 106–119

    Article  PubMed  CAS  Google Scholar 

  7. Bernstein G, Knodel E, Heldt GP (1995) Airway leak size in neonates and autocycling of three flow-triggered ventilators. Crit Care Med 23: 1739–1744

    Article  PubMed  CAS  Google Scholar 

  8. Calderini E, Confalonieri M, Puccio P, Francavilla N, Stella L, Gregoretti C (1999) Patientventilator asynchrony during noninvasive ventilation: the role of expiratory trigger. Intensive Care Med 25: 662–7

    Article  PubMed  CAS  Google Scholar 

  9. Prinianakis G, Delmastro M, Carlucci A, Ceriana P, Nava S (2004) Effect of varying the pressurisation rate during noninvasive pressure support ventilation. Eur Respir J 23: 314–320

    Article  PubMed  CAS  Google Scholar 

  10. Schettino G, Tucci M, Sousa R, Valente Barbas C, Passos Amato M, Carvalho C (2001) Mask mechanics and leak dynamics during noninvasive pressure support ventilation: a bench study. Intensive Care Med 27: 1887–1891

    Article  PubMed  CAS  Google Scholar 

  11. Vignaux L, Vargas F, Roeseler J, et al (2009) Patient-ventilator interaction during non-invasive ventilation for acute respiratory failure: a multicenter study. Intensive Care Med (in press)

    Google Scholar 

  12. Martin T, Hovis JD, Costantino J, et al (2000) A randomized, prospective evaluation of noninvasive ventilation for acute respiratory failure. Am J Respir Crit Care Med 161: 807–813

    PubMed  CAS  Google Scholar 

  13. Nava S, Gregoretti C, Fanfulla F, et al. (2005) Noninvasive ventilation to prevent respiratory failure after extubation in high-risk patients. Crit Care Med 33: 2465–2470

    Article  PubMed  Google Scholar 

  14. Mehta S, Hill N (2001) Noninvasive ventilation. Am J Respir Crit Care Med 163: 540–577

    PubMed  CAS  Google Scholar 

  15. Schönhofer B, Sortor-Leger S (2002) Equipment needs for noninvasive mechanical ventilation. Eur Respir J 20: 1029–1036

    Article  PubMed  Google Scholar 

  16. Cinnella G, Conti G, Lofaso F, et al (1996) Effects of assisted ventilation on the work of breathing: volume-controlled versus pressure-controlled ventilation. Am J Respir Crit Care Med 153: 1025–1033

    PubMed  CAS  Google Scholar 

  17. Girault C, Richard J, Chevron V, et al (1997) Comparative physiologic effects of noninvasive assist-control and pressure support ventilation in acute hypercapnic respiratory failure. Chest 111: 1639–1648

    Article  PubMed  CAS  Google Scholar 

  18. Vitacca M, Rubini F, Foglio K, Scalvini S, Nava S, Ambrosino N (1993) Non-invasive modalities of positive pressure ventilation improve the outcome of acute exacerbations in COLD patients. Intensive Care Med 19: 450–455

    Article  PubMed  CAS  Google Scholar 

  19. 19. British Thoracic Society Standards of Care Committee (2002) Non-invasive ventilation in acute respiratory failure. Thorax 57: 192–211

    Article  Google Scholar 

  20. Evans T (2001) International Consensus Conference in Intensive Care Medicine: Noninvasive positive pressure ventilation in acute respiratory failure. Intensive Care Med 27: 166–178

    Article  PubMed  CAS  Google Scholar 

  21. Brochard L (1994) Inspiratory pressure support. Eur J Anesthesiol 11: 29–36

    CAS  Google Scholar 

  22. Vignaux L, Tassaux D, Jolliet P (2007) Performance of noninvasive ventilation modes on ICU ventilators during pressure support: a bench model study. Intensive Care Med 33: 1444–1451

    Article  PubMed  Google Scholar 

  23. Richard JC, Carlucci A, Breton L, et al (2002) Bench testing of pressure support ventilation with three different generations of ventilators. Intensive Care Med 28: 1049–1057

    Article  PubMed  Google Scholar 

  24. Aslanian P, El Atrous S, Isabey D, et al (1998) Effects of flow triggering on breathing effort during partial ventilatory support. Am J Respir Crit Care Med 157: 135–143

    PubMed  CAS  Google Scholar 

  25. Nava S, Ambrosino N, Bruschi C, Confalonieri M, Rampulla C (1997) Physiological effects of flow and pressure triggering during non-invasive mechanical ventilation in patients with chronic obstructive pulmonary disease. Thorax 52: 249–254

    Article  PubMed  CAS  Google Scholar 

  26. Hill LL, Pearl R (2000) Flow triggering, pressure triggering, and autotriggering during mechanical ventilation. Crit Care Med 28: 579–581

    Article  PubMed  CAS  Google Scholar 

  27. Chao D, Scheinhorn D, Stearn-Hassenpflug M (1997) Patient-ventilator trigger asynchrony in prolonged mechanical ventilation. Chest 112: 1592–1599

    Article  PubMed  CAS  Google Scholar 

  28. Nava S, Bruschi C, Rubini F, Palo A, Iotti G, Braschi A (1995) Respiratory response and inspiratory effort during pressure support ventilation in COPD patients. Intensive Care Med 21: 871–879

    Article  PubMed  CAS  Google Scholar 

  29. Leung P, Jubran A, Tobin M (1997) Comparison of assisted ventilator modes on triggering, patient effort, and dyspnea. Am J Respir Crit Care Med 155: 1940–1948

    PubMed  CAS  Google Scholar 

  30. Bonmarchand G, Chevron V, Chopin C, et al (1996) Increased initial flow rate reduces inspiratory work of breathing during pressure support ventilation in patients with exacerbation of chronic obstructive pulmonary disease. Intensive Care Med 22: 1147–1154

    Article  PubMed  CAS  Google Scholar 

  31. Bonmarchand G, Chevron V, Ménard J, et al (1999) Effects of pressure ramp slope values on the work of breathing during pressure support ventilation in restrictive patients. Crit Care Med 27: 715–722

    Article  PubMed  CAS  Google Scholar 

  32. Brochard L, Harf A, Lorino H, Lemaire F (1989) Inspiratory pressure support prevents diaphragmatic fatigue during weaning from mechanical ventilation. Am Rev Respir Dis 139: 513–521

    PubMed  CAS  Google Scholar 

  33. Brochard L, Isabey D, Piquet J, et al (1990) Reversal of acute exacerbations of chronic obstructive lung disease by inspiratory assistance with a face mask. N Engl J Med 323: 1523–1530

    PubMed  CAS  Google Scholar 

  34. L’Her E, Deye N, Lellouche F, et al (2005) Physiologic effects of noninvasive ventilation during acute lung injury. Am J Respir Crit Care Med 172: 1112–1118

    Article  Google Scholar 

  35. Mehta S, McCool F, Hill NS (2001) Leak compensation in positive pressure ventilators: a lung model study. Eur Respir J 17: 259–267

    Article  PubMed  CAS  Google Scholar 

  36. Dojat M, Harf A, Touchard D, Lemaire F, Brochard L (2000) Clinical evaluation of a computer-controlled pressure support mode. Am J Respir Crit Care Med 161: 1161–6

    PubMed  CAS  Google Scholar 

  37. Battisti A, Roeseler J, Tassaux D, Jolliet P (2006) Automatic adjustment of pressure support by a computer-driven knowledge based system during noninvasive ventilation: a feasibility study. Intensive Care Med 33: 632–638

    Article  Google Scholar 

  38. Jubran A, Van de Graaf W, Tobin M (1995) Variability of patient-ventilator interactions with pressure support ventilation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 152: 129–136

    PubMed  CAS  Google Scholar 

  39. Parthasarathy S, Jubran A, Tobin M (1998) Cycling of inspiratory and expiratory muscle groups with the ventilator in airflow limitation. Am J Respir Crit Care Med 158: 1471–1478

    PubMed  CAS  Google Scholar 

  40. Nava S, Bruschi C, Fracchia C, Braschi A, Rubini F (1997) Patient-ventilator interaction and inspiratory effort during pressure support ventilation in patients with different pathologies. Eur Respir J 10: 177–183

    Article  PubMed  CAS  Google Scholar 

  41. Tassaux D, Michotte J, Gainnier M, Gratadour P, Fonseca S, Jolliet P (2004) Expiratory trigger setting in Pressure Support Ventilation: from mathematical model to bedside. Crit Care Med 32: 1844–1850

    Article  PubMed  Google Scholar 

  42. Tokioka H, Tanaka T, Ishizu T, et al (2001) The effect of breath termination criterion on breathing patterns and the work of breathing during pressure support ventilation. Anesth Analg 92(1):161–5

    Article  PubMed  CAS  Google Scholar 

  43. Tassaux D, Gainnier M, Battisti A, Jolliet P (2005) Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload. Am J Respir Crit Care Med 172: 1283–1289

    Article  PubMed  Google Scholar 

  44. Kwok H, McCormack J, Cece R, Houtchens J, Hill NS (2003) Controlled trial of oronasal versus nasal mask ventilation in the treatment of acute respiratory failure. Crit Care Med 31: 468–473

    Article  PubMed  Google Scholar 

  45. Navalesi P, Fanfulla F, Frigerio P, Gregoretti C, Nava S (2000) Physiologic evaluation of noninvasive mechanical ventilation delivered with three types of masks in patients with chronic hypercapnic respiratory failure. Crit Care Med 28: 1785–1790

    Article  PubMed  CAS  Google Scholar 

  46. Antonelli M, Conti G, Pelosi P, et al (2002) New treatment of acute hypoxemic respiratory failure: noninvasive pressure support ventilation delivered by helmet-a pilot controlled trial. Crit Care Med 30: 602–608

    Article  PubMed  Google Scholar 

  47. Antonelli M, Pennisi MA, Pelosi P, et al (2004) Noninvasive positive pressure ventilation using a helmet in patients with acute exacerbation of chronic obstructive pulmonary disease: a feasibility study. Anesthesiology 100: 16–24

    Article  PubMed  Google Scholar 

  48. Costa R, Navalesi P, Spinazzola G, et al (2008) Comparative evaluation of different helmets on patient-ventilator interaction during noninvasive ventilation. Intensive Care Med 34: 1102–1108

    Article  PubMed  CAS  Google Scholar 

  49. Brochard L (1996) Inspiratory pressure support: still a simple mode? Intensive Care Med 22: 1137–1138

    Article  PubMed  CAS  Google Scholar 

  50. Mancebo J (2003) Triggering and cycling off during pressure support ventilation: simplicity or sophistication? Intensive Care Med 29: 1871–1872

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jolliet, P., Tassaux, D., Vignaux, L. (2009). Patient-ventilator Interaction during Noninvasive Ventilation. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine. Yearbook of Intensive Care and Emergency Medicine, vol 2009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92276-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92276-6_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92275-9

  • Online ISBN: 978-3-540-92276-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics