Skip to main content

Tight Local Approximation Results for Max-Min Linear Programs

  • Conference paper
Algorithmic Aspects of Wireless Sensor Networks (ALGOSENSORS 2008)

Abstract

In a bipartite max-min LP, we are given a bipartite graph \(\mathcal{G} = (V \cup I \cup K, E)\), where each agent v ∈ V is adjacent to exactly one constraint i ∈ I and exactly one objective k ∈ K. Each agent v controls a variable x v . For each i ∈ I we have a nonnegative linear constraint on the variables of adjacent agents. For each k ∈ K we have a nonnegative linear objective function of the variables of adjacent agents. The task is to maximise the minimum of the objective functions. We study local algorithms where each agent v must choose x v based on input within its constant-radius neighbourhood in . We show that for every ε> 0 there exists a local algorithm achieving the approximation ratio Δ I (1 − 1/Δ K ) + ε. We also show that this result is the best possible – no local algorithm can achieve the approximation ratio Δ I (1 − 1/Δ K ). Here Δ I is the maximum degree of a vertex i ∈ I, and Δ K is the maximum degree of a vertex k ∈ K. As a methodological contribution, we introduce the technique of graph unfolding for the design of local approximation algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM Journal on Computing 24(6), 1259–1277 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Floréen, P., Hassinen, M., Kaski, P., Suomela, J.: Local approximation algorithms for a class of 0/1 max-min linear programs (manuscript, 2008) arXiv:0806.0282 [cs.DC]

    Google Scholar 

  3. Floréen, P., Kaski, P., Musto, T., Suomela, J.: Approximating max-min linear programs with local algorithms. In: Proc. 22nd IEEE International Parallel and Distributed Processing Symposium (IPDPS), Miami, FL, USA. IEEE, Piscataway (2008)

    Google Scholar 

  4. Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Computing 21(1), 193–201 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Angluin, D.: Local and global properties in networks of processors. In: Proc. 12th Annual ACM Symposium on Theory of Computing (STOC), Los Angeles, CA, USA, pp. 82–93. ACM Press, New York (1980)

    Google Scholar 

  6. Papadimitriou, C.H., Yannakakis, M.: Linear programming without the matrix. In: Proc. 25th Annual ACM Symposium on Theory of Computing (STOC), San Diego, CA, USA, pp. 121–129. ACM Press, New York (1993)

    Google Scholar 

  7. Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In: Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Miami, FL, USA, pp. 980–989. ACM Press, New York (2006)

    Google Scholar 

  8. Lynch, N.A.: A hundred impossibility proofs for distributed computing. In: Proc. 8th Annual ACM Symposium on Principles of Distributed Computing (PODC), Edmonton, Canada, pp. 1–28. ACM Press, New York (1989)

    Google Scholar 

  9. Kuhn, F., Moscibroda, T.: Distributed approximation of capacitated dominating sets. In: Proc. 19th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), San Diego, CA, USA, pp. 161–170. ACM Press, New York (2007)

    Google Scholar 

  10. Kuhn, F., Moscibroda, T., Wattenhofer, R.: On the locality of bounded growth. In: Proc. 24th Annual ACM Symposium on Principles of Distributed Computing (PODC), Las Vegas, NV, USA, pp. 60–68. ACM Press, New York (2005)

    Google Scholar 

  11. Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8(3), 261–277 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lazebnik, F., Ustimenko, V.A.: Explicit construction of graphs with an arbitrary large girth and of large size. Discrete Applied Mathematics 60(1–3), 275–284 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hoory, S.: On Graphs of High Girth. PhD thesis, Hebrew University, Jerusalem (March 2002)

    Google Scholar 

  14. McKay, B.D., Wormald, N.C., Wysocka, B.: Short cycles in random regular graphs. Electronic Journal of Combinatorics 11(1), R66 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally! In: Proc. 23rd Annual ACM Symposium on Principles of Distributed Computing (PODC), St. John’s, Newfoundland, Canada, pp. 300–309. ACM Press, New York (2004)

    Google Scholar 

  16. Anderson, E.J., Nash, P.: Linear Programming in Infinite-Dimensional Spaces: Theory and Applications. John Wiley & Sons, Ltd., Chichester (1987)

    MATH  Google Scholar 

  17. Godsil, C., Royle, G.: Algebraic Graph Theory. Graduate Texts in Mathematics, vol. 207. Springer, New York (2004)

    MATH  Google Scholar 

  18. Hocking, J.G., Young, G.S.: Topology. Addison-Wesley, Reading (1961)

    MATH  Google Scholar 

  19. Munkres, J.R.: Topology, 2nd edn. Prentice-Hall, Upper Saddle River (2000)

    MATH  Google Scholar 

  20. Amit, A., Linial, N., Matoušek, J., Rozenman, E.: Random lifts of graphs. In: Proc 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Washington, DC, USA, pp. 883–894. Society for Industrial and Applied Mathematics, Philadelphia (2001)

    Google Scholar 

  21. Esparza, J., Heljanko, K.: A new unfolding approach to LTL model checking. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 475–486. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Floréen, P., Hassinen, M., Kaski, P., Suomela, J. (2008). Tight Local Approximation Results for Max-Min Linear Programs. In: Fekete, S.P. (eds) Algorithmic Aspects of Wireless Sensor Networks. ALGOSENSORS 2008. Lecture Notes in Computer Science, vol 5389. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92862-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92862-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92861-4

  • Online ISBN: 978-3-540-92862-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics