Skip to main content

Algebraic Geometry Codes from Order Domains

  • Chapter
  • First Online:
Gröbner Bases, Coding, and Cryptography

Abstract

In this tutorial we introduce order domains and study the related codes. Special attention is given to the one-point geometric Goppa codes. We show how Gröbner basis theory helps us constructing order domains as well as helps us dealing with the related codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • H. E. Andersen, On puncturing of codes from norm-trace curves, Finite Fields Appl. 13 (2007), no. 1, 136–157.

    Article  MathSciNet  MATH  Google Scholar 

  • H. E. Andersen and O. Geil, Evaluation codes from order domain theory, Finite Fields Appl. 14 (2008), 92–123.

    Article  MathSciNet  MATH  Google Scholar 

  • D. Augot, E. Betti and E. Orsini, An introduction to linear and cyclic codes, this volume, 2009, pp. 47–68.

    Google Scholar 

  • P. Beelen, The order bound for general algebraic geometric codes, Finite Fields Appl. 13 (2007), no. 3, 655–680.

    Article  MathSciNet  Google Scholar 

  • M. Bras-Amorós and M. E. O’Sullivan, The correction capability of the Berlekamp–Massey–Sakata algorithm with majority voting, AAECC 17 (2006), no. 5, 315–335.

    Article  MATH  Google Scholar 

  • B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal, Ph.D. thesis, Innsbruck, 1965.

    Google Scholar 

  • B. Buchberger, Gröbner-bases: An algorithmic method in polynomial ideal theory, Multidimensional systems theory, Reidel, Dordrecht, 1985, pp. 184–232.

    Chapter  Google Scholar 

  • B. Buchberger, Bruno Buchberger’s PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal, J. Symb. Comput. 41 (2006), nos. 3–4, 475–511.

    Article  MathSciNet  MATH  Google Scholar 

  • J. Fitzgerald and R. F. Lax, Decoding affine variety codes using Gröbner bases, Des. Codes Cryptogr. 13 (1998), no. 2, 147–158.

    Article  MathSciNet  MATH  Google Scholar 

  • O. Geil, On codes from norm-trace curves, Finite Fields Appl. 9 (2003), 351–371.

    Article  MathSciNet  MATH  Google Scholar 

  • O. Geil and T. Høholdt, On hyperbolic codes, LNCS, vol. 2227, Springer, Berlin, 2001, pp. 159–171.

    Google Scholar 

  • O. Geil and R. Matsumoto, Generalized Sudan’s list decoding for order domain codes, Proc. of AAECC2007, 2007, pp. 50–59.

    Google Scholar 

  • O. Geil and R. Pellikaan, On the structure of order domains, Finite Fields Appl. 8 (2002), 369–396.

    Article  MathSciNet  MATH  Google Scholar 

  • O. Geil and C. Thommesen, On the Feng–Rao bound for generalized Hamming weights, LNCS, vol. 3857, Springer, Berlin, 2006, pp. 295–306.

    Google Scholar 

  • P. Heijnen and R. Pellikaan, Generalized Hamming weights of q -ary Reed–Muller codes, IEEE Trans. on Inf. Th. 44 (1998), no. 1, 181–196.

    Article  MathSciNet  MATH  Google Scholar 

  • T. Høholdt, J. van Lint and R. Pellikaan, Algebraic geometry of codes, Handbook of coding theory (V. S. Pless and W.C. Huffman, eds.), Elsevier, Amsterdam, 1998, pp. 871–961.

    Google Scholar 

  • D. A. Leonard, A tutorial on AG code construction from a Gröbner basis perspective, this volume, 2009, pp. 93–106.

    Google Scholar 

  • J. B. Little, The ubiquity of order domains for the construction of error control codes, Adv. Math. Commun. 1 (2007), no. 1, 151–171.

    Article  MathSciNet  MATH  Google Scholar 

  • J. B. Little, Automorphisms and encoding of AG and order domain codes, this volume, 2009, pp. 107–120.

    Google Scholar 

  • R. Matsumoto, Miura’s generalization of one-point AG codes is equivalent to Høholdt, van Lint and Pellikaan’s generalization, IEICE Trans. Fund. E82-A (1999), no. 10, 2007–2010.

    Google Scholar 

  • M. E. O’Sullivan, New codes for the Berlekamp–Massey–Sakata algorithm, Finite Fields Appl. 7 (2001), no. 2, 293–317.

    Article  MathSciNet  MATH  Google Scholar 

  • S. Sakata, The BMS algorithm, this volume, 2009a, pp. 143–163.

    Google Scholar 

  • S. Sakata, The BMS algorithm and decoding of AG codes, this volume, 2009b, pp. 165–185.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olav Geil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Geil, O. (2009). Algebraic Geometry Codes from Order Domains. In: Sala, M., Sakata, S., Mora, T., Traverso, C., Perret, L. (eds) Gröbner Bases, Coding, and Cryptography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93806-4_8

Download citation

Publish with us

Policies and ethics