Skip to main content

Magnetoseed – Vasculäres Tissue Engineering

  • Chapter
Medizintechnik

Zusammenfassung

Gegenwärtig sind kardiovaskuläre Erkrankungen, allen voran die Arteriosklerose koronarer und zerebraler Gefäße, Ursache für 38% aller Todesfälle in Nordamerika und häufigste Todesursache europäischer Männer < 65 Jahre und zweithäufigste Todesursache bei Frauen [4]. Es wird prognostiziert, dass innerhalb der nächsten 10–15 Jahre kardiovaskuläre Erkrankungen und deren Komplikationen weltweit die häufigste Todesursache stellen werden. Dies ist zum einen Folge der ansteigenden Prävalenz kardiovaskulärer Erkrankungen in Osteuropa und zunehmend auch in den Entwicklungsländern, zum anderen Folge der kontinuierlich ansteigenden Inzidenz von Übergewicht und Diabetes mellitus in den westlichen Ländern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Shin‘oka, T., Y. Imai, and Y. Ikada, Transplantation of a Tissue-Engineered Pulmonary Artery. N Engl J Med, 2001. 344(7): p. 532–533.

    Article  Google Scholar 

  2. Mitchell, S.L. and L.E. Niklason, Requirements for growing tissue-engineered vascular grafts. Cardiovascular Pathology, 2003. 12(2): p. 59–64.

    Article  Google Scholar 

  3. Shum-Tim, D., et al., Tissue engineering of autologous aorta using a new biodegradable polymer. Ann Thorac Surg, 1999. 68(6): p. 2298–2304.

    Article  Google Scholar 

  4. Murray, C. and A. Lopez, Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. The Lancet, 1997. 349(9063): p. 1436–1442.

    Article  Google Scholar 

  5. Aird, W.C., Phenotypic Heterogeneity of the Endothelium: I. Structure, Function, and Mechanisms. Circ Res, 2007. 100(2): p. 158–173.

    Article  Google Scholar 

  6. Aird, W.C., Phenotypic Heterogeneity of the Endothelium: II. Representative Vascular Beds. Circ Res, 2007. 100(2): p. 174–190.

    Article  Google Scholar 

  7. Michiels, C., Endothelial cell functions. Journal of Cellular Physiology, 2003. 196(3): p. 430–443.

    Article  Google Scholar 

  8. McGuigan, A.P. and M.V. Sefton, The influence of biomaterials on endothelial cell thrombogenicity. Biomaterials, 2007. 28(16): p. 2547–2571.

    Article  Google Scholar 

  9. Yamamoto, K., et al., Tissue Distribution and Regulation of Murine von Willebrand Factor Gene Expression In Vivo. Blood, 1998. 92(8): p. 2791–2801.

    Google Scholar 

  10. Parikh, S.A. and E.R. Edelman, Endothelial cell delivery for cardiovascular therapy. Advanced Drug Delivery Reviews, 2000. 42(1–2): p. 139–161.

    Article  Google Scholar 

  11. Meinhart, J.G., et al., Clinical autologous in vitro endothelialization of 153 infrainguinal ePTFE grafts. The Annals of Thoracic Surgery, 2001. 71(5, Supplement 1): p. S327–S331.

    Article  Google Scholar 

  12. Meinhart, J., M. Deutsch, and P. Zilla, Eight Years of Clinical Endothelial Cell Transplantation Closing the Gap Between Prosthetic Grafts and Vein Grafts. ASAIO Journal, 1997. 43(5): p. M522.

    Article  Google Scholar 

  13. Deutsch, M., et al., Clinical autologous in vitro endothelialization of infrainguinal ePTFE grafts in 100 patients: A 9-year experience. Surgery, 1999. 126(5): p. 847–855.

    MathSciNet  Google Scholar 

  14. Riha, G.M., et al., Review: Application of Stem Cells for Vascular Tissue Engineering. Tissue Engineering, 2005. 11(9–10): p. 1535–1552.

    Article  Google Scholar 

  15. Kaushal, S., et al., Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med, 2001. 7: p. 1035–40.

    Article  Google Scholar 

  16. Schmidt, D., et al., Umbilical Cord Blood Derived Endothelial Progenitor Cells for Tissue Engineering of Vascular Grafts. Ann Thorac Surg, 2004. 78(6): p. 2094–2098.

    Article  Google Scholar 

  17. Shirota, T., et al., Human Endothelial Progenitor Cell-Seeded Hybrid Graft: Proliferative and Antithrombogenic Potentials in Vitro and Fabrication Processing. Tissue Engineering, 2003. 9(1): p. 127–136.

    Article  MathSciNet  Google Scholar 

  18. Cho, S.-W., et al., Small-Diameter Blood Vessels Engineered With Bone Marrow-Derived Cells. Annals of Surgery, 2005. 241(3): p. 506–515.

    Article  Google Scholar 

  19. Huang, N.F., R.J. Lee, and S. Li, Chemical and Physical Regulation of Stem Cells and Progenitor Cells: Potential for Cardiovascular Tissue Engineering. Tissue Engineering, 2007. in press.

    Google Scholar 

  20. Zwiebel, J., et al., High-level recombinant gene expression in rabbit endothelial cells transduced by retroviral vectors. Science, 1989. 243(4888): p. 220–222.

    Article  Google Scholar 

  21. Wilson, J., et al., Implantation of vascular grafts lined with genetically modified endothelial cells. Science, 1989. 244(4910): p. 1344–1346.

    Article  Google Scholar 

  22. Callow, A., The vascular endothelial cell as a vehicle for gene therapy. Journal of Vascular Surgery, 1990. 11(6): p. 793–798.

    Article  Google Scholar 

  23. Newman, K., N. Nguyen, and D. Dichek, Quantification of vascular graft seeding by use of computer-assisted image analysis and genetically modified endothelial cells. Journal of Vascular Surgery, 1991. 14(2): p. 140–146.

    Article  Google Scholar 

  24. Shayani, V., K.D. Newman, and D.A. Dichek, Optimization of Recombinant t-PA Secretion from Seeded Vascular Grafts. Journal of Surgical Research, 1994. 57(4): p. 495–504.

    Article  Google Scholar 

  25. Dunn, P.F., et al., Seeding of Vascular Grafts With Genetically Modified Endothelial Cells : Secretion of Recombinant TPA Results in Decreased Seeded Cell Retention In Vitro and In Vivo. Circulation, 1996. 93(7): p. 1439–1446.

    Google Scholar 

  26. Sackman, J.E., et al., Synthetic vascular grafts seeded with genetically modified endothelium in the dog: Evaluation of the effect of seeding technique and retroviral vector on cell persistence in vivo. Cell Transplantation, 1995. 4(2): p. 219–235.

    Article  Google Scholar 

  27. Hess, F., et al., Significance of the inner-surface structure of small-caliber prosthetic blood vessels in relation to the development, presence, and fate of a neo-intima. A morphological evaluation. Journal of Biomedical Materials Research, 1984. 18(7): p. 745–755.

    Article  Google Scholar 

  28. Voorhees, A., J. A, and B. AH, Use of tubes constructed from Vinyon-N cloth in bridging arterial defects. Ann. Surg., 1952(135): p. 332.

    Google Scholar 

  29. Gulbins, H., et al., Development of an artificial vessel lined with human vascular cells. Journal of Thoracic and Cardiovascular Surgery, 2004. 128(3): p. 372–377.

    Article  Google Scholar 

  30. Ortenwall, P., et al., Endothelial cell seeding reduces thrombogenicity of Dacron grafts in humans. Journal of Vascular Surgery, 1990. 11(3): p. 403–410.

    Article  Google Scholar 

  31. Golden, e.a., Healing of polytetrafluoroethylene arterial grafts is influenced by graft porosity. J. Vasc. Surg., 1990. 11: p. 838–845.

    Article  Google Scholar 

  32. Kalman, P., et al., Differential stimulation of macrophage procoagulant activity by vascular grafts. Journal of Vascular Surgery, 1993. 17(3): p. 531–537.

    Article  MathSciNet  Google Scholar 

  33. Miyauchi, M. and S. Shionoya, Complement activation by vascular prostheses and its role in progression of arteriosclerotic lesions. Angiology, 1988. 39(10): p. 881–90.

    Article  Google Scholar 

  34. Blieskastel, B.K., Der femoropopliteale P1-Bypass mittels Fluoropassiv- Erfahrungen mit einem neuen alloplastischen Gefäßersatz, in Medizinische Fakultät. 2003, Julius-Maximilians-Universität: Würzburg.

    Google Scholar 

  35. Riepe, G., et al., Long-term in vivo alterations of polyester vascular grafts in humans. European Journal of Vascular and Endovascular Surgery, 1997. 13(6): p. 540–548.

    Article  Google Scholar 

  36. Jeschke, M., et al., Polyurethane vascular prostheses decreases neointimal formation compared with expanded polytetrafluoroethylene. Journal of Vascular Surgery, 1999. 29(1): p. 168–176.

    Article  Google Scholar 

  37. Grenier, S., M. Sandig, and K. Mequanint, Polyurethane biomaterials for fabricating 3D porous scaffolds and supporting vascular cells. Journal of Biomedical Materials Research Part A, 2007. In Press

    Google Scholar 

  38. S. Gogolewski, M.J., S. M. Perren, J. G. Dillon, M. K. Hughes,, Tissue response and in vivo degradation of selected polyhydroxyacids: Polylactides (PLA), poly(3-hydroxybutyrate) (PHB), and poly(3-hydroxybutyrate-<I>co</I>-3-hydroxyvalerate) (PHB/VA). Journal of Biomedical Materials Research, 1993. 27(9): p. 1135–1148.

    Article  Google Scholar 

  39. Niklason, L.E., et al., Functional Arteries Grown in Vitro. Science, 1999. 284(5413): p. 489–493.

    Article  Google Scholar 

  40. Atala, A. and D.J. Mooeny, Synthetic Biodegradable Polymer Scaffolds. 1997, Boston, MA: Birkhauser.

    Google Scholar 

  41. Miller, R.A., J.M. Brady, and Duane E. Cutright, Degradation rates of oral resorbable implants (polylactates and polyglycolates): Rate modification with changes in PLA/PGA copolymer ratios. Journal of Biomedical Materials Research, 1977. 11(5): p. 711–719.

    Article  Google Scholar 

  42. Serrano, M.C., et al., Mitochondrial membrane potential and reactive oxygen species content of endothelial and smooth muscle cells cultured on poly([epsilon]-caprolactone) films. Biomaterials, 2006. 27(27): p. 4706–4714.

    Article  Google Scholar 

  43. Hoerstrup, S.P., et al., Tissue engineering of small caliber vascular grafts. European Journal of Cardio-Thoracic Surgery, 2001. 20(1): p. 164–169.

    Article  Google Scholar 

  44. Lepidi, S., et al., Hyaluronan Biodegradable Scaffold for Small-caliber Artery Grafting: Preliminary Results in an Animal Model. European Journal of Vascular and Endovascular Surgery, 2006. 32(4): p. 411–417.

    Article  Google Scholar 

  45. Lepidi, S., et al., Hyaluronan Biodegradable Scaffold for Small-caliber Artery Grafting: Preliminary Results in an Animal Model. Journal of Vascular Surgery, 2006. 44(4): p. 908.

    Article  Google Scholar 

  46. Weinberg, C. and E. Bell, A blood vessel model constructed from collagen and cultured vascular cells Science, 1986. 231(4736): p. 397–400.

    Article  Google Scholar 

  47. Nicolas, F.L. and C.H. Gagnieu, Denatured thiolated collagen : II. Cross-linking by oxidation. Biomaterials, 1997. 18(11): p. 815–821.

    Article  Google Scholar 

  48. Boccafoschi, F., et al., Biological performances of collagen-based scaffolds for vascular tissue engineering. Biomaterials, 2005. 26(35): p. 7410–7417.

    Article  Google Scholar 

  49. Badylak, S.F., et al., Small intestinal submucosa as a large diameter vascular graft in the dog. Journal of Surgical Research, 1989. 47(1): p. 74–80.

    Article  Google Scholar 

  50. Badylak, S., et al., Strength over Time of a Resorbable Bioscaffold for Body Wall Repair in a Dog Model. Journal of Surgical Research, 2001. 99(2): p. 282–287.

    Article  Google Scholar 

  51. Sandusky, G.E., G.C. Lantz, and S.F. Badylak, Healing Comparison of Small Intestine Submucosa and ePTFE Grafts in the Canine Carotid Artery. Journal of Surgical Research, 1995. 58(4): p. 415–420.

    Article  Google Scholar 

  52. Woods, A.M., et al., Improved biocompatibility of small intestinal submucosa (SIS) following conditioning by human endothelial cells. Biomaterials, 2004. 25(3): p. 515–525.

    Article  Google Scholar 

  53. Kakisis, J.D., et al., Artificial blood vessel: The Holy Grail of peripheral vascular surgery. Journal of Vascular Surgery, 2005. 41(2): p. 349–354.

    Article  Google Scholar 

  54. Bowlin, G.L. and S.E. Rittgers, Electrostatic endothelial cell seeding technique for small diameter (<6 mm) vascular prostheses: Feasibility testing. Cell Transplantation, 1997. 6(6): p. 623–629.

    Article  Google Scholar 

  55. Zhang, J., et al., Adhesion improvement of polytetrafluoroethylene/metal interface by graft copolymerization. Surface and Interface Analysis, 1999. 28(1): p. 235–239.

    Google Scholar 

  56. Breme, F., J. Buttstaedt, and G. Emig, Coating of polymers with titanium-based layers by a novel plasma-assisted chemical vapor deposition process. Thin Solid Films, 2000. 377–378: p. 755–759.

    Article  Google Scholar 

  57. Haupt, M., Niederdruckplasmaprozesse zur gezielten Funktionalisierung von Grenz- und Oberflächen, in Jahrbuch Oberflächentechnik, R. Suchentrunk, Editor. 2006, Leuze: Saulgau. p. 149–161.

    Google Scholar 

  58. Ueberrueck, T., et al., Characteristics of titanium-coated polyester prostheses in the animal model. Journal of Biomedical Materials Research, 2005. 72B(1): p. 173–178.

    Article  Google Scholar 

  59. Cikirikcioglu, M., et al., Titanium coating improves neo-endothelialisation of ePTFE grafts. Thorac cardiovasc Surg, 2006. 54.

    Google Scholar 

  60. Lee, K.W., et al., Circulating endothelial cells, von Willebrand factor, interleukin-6, and prognosis in patients with acute coronary syndromes. Blood, 2005. 105(2): p. 526–532.

    Article  Google Scholar 

  61. Erdbruegger, U., M. Haubitz, and A. Woywodt, Circulating endothelial cells: A novel marker of endothelial damage. Clinica Chimica Acta, 2006. 373(1–2): p. 17–26.

    Article  Google Scholar 

  62. George, J., et al., Anti-endothelial cell antibodies in patients with coronary atherosclerosis. Immunology Letters, 2000. 73(1): p. 23–27.

    Article  Google Scholar 

  63. Park, M.-C., et al., Anti-endothelial cell antibodies and antiphospholipid antibodies in Takayasu’s arteritis: correlations of their titers and isotype distributions with disease activity. Clin Exp Rheumatol, 2006. 24(41): p. S010–S016.

    Google Scholar 

  64. Jamin, C., et al., Induction of endothelial cell apoptosis by the binding of anti-endothelial cell antibodies to Hsp60 in vasculitis-associated systemic autoimmune diseases. Arthritis & Rheumatism, 2005. 52(12): p. 4028–4038.

    Article  Google Scholar 

  65. Methe, H. and E.R. Edelman, Cell-Matrix Contact Prevents Recognition and Damage of Endothelial Cells in States of Heightened Immunity. Circulation, 2006. 114(1_suppl): p. I–233–238.

    Article  Google Scholar 

  66. Methe, H., et al., Matrix Embedding Alters the Immune Response Against Endothelial Cells In Vitro and In Vivo. Circulation, 2005. 112(9_suppl): p. I–89–95.

    Google Scholar 

  67. Methe, H. and E.R. Edelman, Tissue Engineering of Endothelial Cells and the Immune Response. Transplantation Proceedings, 2006. 38(10): p. 3293–3299.

    Article  Google Scholar 

  68. Kern, A., K. Liu, and J. Mansbridge, Modification of Fibroblast [ggr]-Interferon Responses by Extracellular Matrix. 2001. 117(1): p. 112–118.

    Google Scholar 

  69. Methe, H., S. Hess, and E.R. Edelman, Endothelial cell-matrix interactions determine maturation of dendritic cells. European Journal of Immunology, 2007. 37(7): p. 1773–1784.

    Article  Google Scholar 

  70. Methe, H., et al., Matrix adherence of endothelial cells attenuates immune reactivity: induction of hyporesponsiveness in allo- and xenogeneic models. FASEB J., 2007. 21(7): p. 1515–1526.

    Article  Google Scholar 

  71. Nugent, H.M., et al., Perivascular Endothelial Implants Inhibit Intimal Hyperplasia in a Model of Arteriovenous Fistulae: A Safety and Efficacy Study in the Pig. Journal of Vascular Research, 2002. 39(6): p. 524–533.

    Article  Google Scholar 

  72. Nugent, H.M., C. Rogers, and E.R. Edelman, Endothelial Implants Inhibit Intimal Hyperplasia After Porcine Angioplasty. Circ Res, 1999. 84(4): p. 384–391.

    Google Scholar 

  73. Martin, I., D. Wendt, and M. Heberer, The role of bioreactors in tissue engineering. Trends in Biotechnology, 2004. 22(2): p. 80–86.

    Article  Google Scholar 

  74. Dunkern, T.R., et al., A Novel Perfusion System for the Endothelialisation of PTFE Grafts Under Defined Flow. European Journal of Vascular and Endovascular Surgery, 1999. 18(2): p. 105–110.

    Google Scholar 

  75. Hsu, S.-h., et al., The effect of dynamic culture conditions on endothelial cell seeding and retention on small diameter polyurethane vascular grafts. Medical Engineering & Physics, 2005. 27(3): p. 267–272.

    Article  Google Scholar 

  76. Perea, H., et al., Direct Magnetic Tubular Cell Seeding: A Novel Approach for Vascular Tissue Engineering. Cells Tissues Organs, 2006. 183(3): p. 156–165.

    Article  Google Scholar 

  77. Matuszewski, L., et al., Cell Tagging with Clinically Approved Iron Oxides: Feasibility and Effect of Lipofection, Particle Size, and Surface Coating on Labeling Efficiency. Radiology, 2005. 235(1): p. 155–161.

    Article  Google Scholar 

  78. Metz, S., et al., Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. European Radiology, 2004. V14(10): p. 1851–1858.

    Google Scholar 

  79. Perea, H., et al., Vascular tissue engineering with magnetic nanoparticles: seeing deeper. Journal of Tissue Engineering and Regenerative Medicine, 2007. In press.

    Google Scholar 

  80. Kopp, A., et al., MR imaging of the liver with Resovist: safety, efficacy, and pharmacodynamic properties. Radiology, 1997. 204(3): p. 749–756.

    Google Scholar 

  81. Perea, H., et al., Vascular tissue engineering with magnetic nanoparticles: seeing deeper. Journal of Tissue Engineering and Regenerative Medicine, 2007. in Press.

    Google Scholar 

  82. Noris, M., et al., Nitric Oxide Synthesis by Cultured Endothelial Cells Is Modulated by Flow Conditions. Circ Res, 1995. 76(4): p. 536–543.

    Google Scholar 

  83. Chiu, J.-J., et al., Shear Stress Increases ICAM-1 and Decreases VCAM-1 and E-selectin Expressions Induced by Tumor Necrosis Factor-{alpha} in Endothelial Cells. Arterioscler Thromb Vasc Biol, 2004. 24(1): p. 73–79.

    Article  Google Scholar 

  84. Balcells, M., et al., Cells in fluidic environments are sensitive to flow frequency. Journal of Cellular Physiology, 2005. 204(1): p. 329–335.

    Article  Google Scholar 

  85. Patel, A., et al., Elastin biosynthesis: The missing link in tissue-engineered blood vessels. Cardiovascular Research, 2006. 71(1): p. 40–49.

    Google Scholar 

  86. Kim, B.-S., et al., Optimizing seeding and culture methods to engineer smooth muscle tissue on biodegradable polymer matrices. Biotechnology and Bioengineering, 1998. 57(1): p. 46–54.

    Article  Google Scholar 

  87. Williams, C. and T.M. Wick, Perfusion Bioreactor for Small Diameter Tissue-Engineered Arteries. Tissue Engineering, 2004. 10(5–6): p. 930–941.

    Article  Google Scholar 

  88. Higgins, S.P., A.K. Solan, and L.E. Niklason, Effects of polyglycolic acid on porcine smooth muscle cell growth and differentiation. Journal of Biomedical Materials Research Part A, 2003. 67A(1): p. 295–302.

    Article  Google Scholar 

  89. Long, J.L. and R.T. Tranquillo, Elastic fiber production in cardiovascular tissue-equivalents. Matrix Biology, 2003. 22(4): p. 339–350.

    Article  Google Scholar 

  90. Tukaj, C., J. Kubasik-Juraniec, and M. Kraszpulski, Morphological changes of aortal smooth muscle cells exposed to calcitriol in culture. Med Sci Monit, 2000. 6(4): p. 668–674.

    Google Scholar 

  91. Hayashi, A., T. Suzuki, and S. Tajima, Modulations of Elastin Expression and Cell Proliferation by Retinoids in Cultured Vascular Smooth Muscle Cells. J Biochem (Tokyo), 1995. 117(1): p. 132–136.

    Google Scholar 

  92. Tajima, S., A. Hayashi, and T. Suzuki, Elastin expression is up-regulated by retinoic acid but not by retinol in chick embryonic skin fibroblasts. Journal of Dermatological Science, 1997. 15(3): p. 166–172.

    Google Scholar 

  93. Buttafoco, L., et al., Electrospinning collagen and elastin for tissue engineering small diameter blood vessels. Journal of Controlled Release.Proceedings of the Eight European Symposium on Controlled Drug Delivery, 2005. 101(1–3): p. 322–4.

    Google Scholar 

  94. Casper, C.L., et al., Functionalizing Electrospun Fibers with Biologically Relevant Macromolecules. Biomacromolecules, 2005. 6(4): p. 1998–2007.

    Article  Google Scholar 

  95. Casper, C.L., et al., Coating Electrospun Collagen and Gelatin Fibers with Perlecan Domain I for Increased Growth Factor Binding. Biomacromolecules, 2007. 8(4): p. 1116–1123.

    Article  Google Scholar 

  96. Seliktar, D. and R.M. Nerem, Blood Vessel Substitute, in Methods of Tissue Engineering, A. Atala and R. Lanza, Editors. 2001, Academic press.

    Google Scholar 

  97. Opitz, F., et al., Tissue engineering of aortic tissue: dire consequence of suboptimal elastic fiber synthesis in vivo. Cardiovascular Research, 2004. 63(4): p. 719–730.

    Google Scholar 

  98. Kanda, K., T. Matsuda, and T. Oka, In Vitro Reconstruction of Hybrid Vascular Tissue Hierarchic and Oriented Cell Layers. ASAIO Journal, 1993. 39(3): p. M566.

    Article  Google Scholar 

  99. Ziegler, T., R.W. Alexander, and R.M. Nerem, An endothelial cell-smooth muscle cell co-culture model for use in the investigation of flow effects on vascular biology. Annals of Biomedical Engineering, 1995. 23(3): p. 216–25.

    Google Scholar 

  100. Kolpakov, V., et al., Effect of Mechanical Forces on Growth and Matrix Protein Synthesis in the In Vitro Pulmonary Artery : Analysis of the Role of Individual Cell Types. Circ Res, 1995. 77(4): p. 823–831.

    Google Scholar 

  101. Kim, B.-S. and D.J. Mooney, Scaffolds for Engineering Smooth Muscle Under Cyclic Mechanical Strain Conditions. Journal of Biomechanical Engineering, 2000. 122(3): p. 210–215.

    Article  Google Scholar 

  102. Kim, B.-S., et al., Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. 1999. 17(10): p. 979–983.

    Google Scholar 

  103. Kim, B.-S., et al., Engineered Smooth Muscle Tissues: Regulating Cell Phenotype with the Scaffold. Experimental Cell Research, 1999. 251(2): p. 318–328.

    Google Scholar 

  104. Seliktar, D., R.M. Nerem, and Z.S. Galis, Mechanical Strain-Stimulated Remodeling of Tissue-Engineered Blood Vessel Constructs. Tissue Engineering, 2003. 9(4): p. 657–666.

    Article  Google Scholar 

  105. Herring, M., S. Baughman, and J. Glover, Endothelium develops on seeded human arterial prosthesis: A brief clinical note. Journal of Vascular Surgery, 1985. 2(5): p. 727–730.

    Article  Google Scholar 

  106. Herring, M., et al., Endothelial seeding of polytetrafluoroethylene popliteal bypasses: A preliminary report. Journal of Vascular Surgery, 1987. 6(2): p. 114–118.

    Article  Google Scholar 

  107. Zilla, P., et al., Endothelial cell seeding of polytetrafluoroethylene vascular grafts in humans: A preliminary report. Journal of Vascular Surgery, 1987. 6(6): p. 535–541.

    Article  Google Scholar 

  108. Örtenwall, P., H. Wadenvik, and B. Risberg, Reduced platelet deposition on seeded versus unseeded segments of expanded polytetrafluoroethylene grafts: Clinical observations after a 6-month follow-up. Journal of Vascular Surgery, 1989. 10(4): p. 374–80.

    Article  Google Scholar 

  109. Magometschnigg, H., et al., Prospective clinical study with in vitro endothelial cell lining of expanded polytetrafluoroethylene grafts in crural repeat reconstruction. Journal of Vascular Surgery, 1992. 15(3): p. 527–535.

    Article  Google Scholar 

  110. Leseche, G., et al., Above-Knee Femoropopliteal Bypass Grafting Using Endothelial Cell Seeded PTFE Grafts: Five-Year Clinical Experience. Annals of Vascular Surgery, 1995. 9(Supplement 1): p. S15–S23.

    Article  Google Scholar 

  111. Kadletz, M., et al., Implantation of in vitro endothelialized polytetrafluoroethylene grafts in human beings. A preliminary report. J Thorac Cardiovasc Surg, 1992. 104(3): p. 736–742.

    Google Scholar 

  112. Laube, H.R., et al., Clinical experience with autologous endothelial cell-seeded polytetrafluoroethylene coronary artery bypass grafts. J Thorac Cardiovasc Surg, 2000. 120(1): p. 134–141.

    Article  Google Scholar 

  113. Gabbieri, D., et al., Aortocoronary Endothelial Cell-Seeded Polytetrafluoroethylene Graft: 9-Year Patency. Ann Thorac Surg, 2007. 83(3): p. 1166–1168.

    Article  Google Scholar 

  114. L’Heureux, N., et al., Technology Insight: the evolution of tissue-engineered vascular grafts – from research to clinical practice. Nature Clinical Practice Cardiovascular Medicine, 2007. 4: p. 389–395.

    Article  Google Scholar 

  115. Hirai, J. and T. Matsuda, Self-organized, tubular hybrid vascular tissue composed of vascular cells and collagen for low-pressure-loaded venous system. Cell Transplantation, 1995. 4(6): p. 597–608.

    Article  Google Scholar 

  116. Hirai, J. and T. Matsuda, Venous reconstruction using hybrid vascular tissue composed of vascular cells and collagen: Tissue regeneration process. Cell Transplantation, 1996. 5(1): p. 93–105.

    Article  Google Scholar 

  117. Matsuda, T. and H. Miwa, A hybrid vascular model biomimicking the hierarchic structure of arterial wall: neointimal stability and neoarterial regeneration process under arterial circulation. J Thorac Cardiovasc Surg, 1995. 110(4): p. 988–997.

    Article  Google Scholar 

  118. Shin’oka, T., et al., Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg, 2005. 129(6): p. 1330–1338.

    Article  Google Scholar 

  119. L’heureux, N., et al., A completely biological tissue-engineered human blood vessel. FASEB J., 1998. 12(1): p. 47–56.

    Google Scholar 

  120. L’Heureux, N., et al., Human tissue-engineered blood vessels for adult arterial revascularization. 2006. 12(3): p. 361–365.

    Google Scholar 

  121. Edelman, E.R., Vascular Tissue Engineering : Designer Arteries. Circ Res, 1999. 85(12): p. 1115–1117.

    Google Scholar 

  122. Cebotari, S., et al., Guided Tissue Regeneration of Vascular Grafts in the Peritoneal Cavity. Circ Res, 2002. 90(8): p. e71–.

    Google Scholar 

  123. Middleton, J.C. and A.J. Tipton, Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 2000. 21(23): p. 2335–2346

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Perea Saavedra, H., Methe, H., Wintermantel, E. (2009). Magnetoseed – Vasculäres Tissue Engineering. In: Wintermantel, E., Ha, SW. (eds) Medizintechnik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93936-8_24

Download citation

Publish with us

Policies and ethics