Skip to main content

Suppression of EGFR Expression by Antisense RNA and RNAi

  • Chapter
  • First Online:
Therapeutic Ribonucleic Acids in Brain Tumors

Abstract

Glioblastoma is the most aggressive form of glioma, representing 15–20% of intracranial tumors and approximately half of gliomas in adults. Even though currently available combined therapy is used, the prognosis of patients with glioblastoma remains poor. In recent years, molecular targeted therapies have been developed when the molecular mechanism of glioblastomas is better understood. Epidermal growth factor receptor (EGFR) amplification/overexpression has been identified as the most common and important genetic aberration in glioblastomas, and it has become a prime target for molecular therapy of glioblastomas. In the present study, antisense EGFR RNA and EGFR siRNA were stably transfected into glioblastoma cells, resulting in significant suppression of EGFR expression, inhibition of cell viability and invasion, and induction of cell apoptosis both in vitro and in vivo. It seems that EGFR siRNA is more effective than antisense EGFR RNA. However, for obtaining high potency and favorable efficacy, the specific targeting site selection and screening are important when using either antisense EGFR RNA or EGFR siRNA treatment. It is expected that the delivery system with sufficiently high efficiency of transfection of antisense RNA and siRNA into tumor cells will be further developed. Combination of RNAi targeting multiple genes with conventional therapy will likely enhance the efficacy of glioblastoma treatment and will be a promising approach in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aigner A (2007) Nonviral in vivo delivery of therapeutic small interfering RNAs. Curr Opin Mol Ther 9:345–352

    CAS  PubMed  Google Scholar 

  • Arwert E, Hingtgen S, Figueiredo J-L, et al (2007) Visualizing the dynamics of EGFR activity and antiglioma therapies in vivo. Cancer Res 67:7335–7342

    Article  CAS  PubMed  Google Scholar 

  • Batchelor TT, Betensky RA, Esposito JM, et al (2004) Age -dependent prognostic effects of genetic alterations in glioblastoma. Clin Cancer Res 10:228–233

    Article  CAS  PubMed  Google Scholar 

  • Behlke MA (2006) Progress towards in vivo use of siRNAs. Mol Ther 13:644–670

    Article  CAS  PubMed  Google Scholar 

  • Benjamin R, Capparella J, Brown A (2003) Classification of glioblastoma multiforme in adults by molecular genetics. Cancer J 9:82–90

    Article  CAS  PubMed  Google Scholar 

  • Biroccio A, Leonetti C, Zupi G (2003) The future of antisense therapy: combination with anticancer treatments. Oncogene 22:6579–6588

    Article  CAS  PubMed  Google Scholar 

  • Boado RJ (2005) RNA interference and nonviral targeted gene therapy of experimental brain cancer. NeuroRx 2:139–150

    Article  PubMed  Google Scholar 

  • Braasch DA, Jensen S, Liu Y, et al (2003) RNA interference in mammalian cells by chemically-modified RNA. Biochemistry 42:7967–7975

    Article  CAS  PubMed  Google Scholar 

  • Chen SM, Wang Y, Xiao BK, et al (2008) Effects of blocking VEGF, hTERT and Bcl-xl by multiple shRNA expression vectors on the human laryngeal squamous carcinoma xenograft in nude mice. Cancer Biol Ther 7:734–739

    Article  CAS  PubMed  Google Scholar 

  • Chi JT, Chang HY, Wang NN, et al (2003) Genome wide view of gene silencing by small interfering RNAs. Proc Natl Acad Sci USA 100:6343–6346

    Article  CAS  PubMed  Google Scholar 

  • Decroe E, Silver PA (2002) Retrovirus-delivered siRNA. BMC Biotechnol 2:15

    Article  Google Scholar 

  • Dillin A (2003) The specifics of small interfering RNA specificity. Proc Natl Acad Sci USA 100:6289–6291

    Article  CAS  PubMed  Google Scholar 

  • Dong L, Pu PY, Wang GX, et al (2006) Study on the alteration of EGFR and p53 in gliomas of Chinese patients. Chin J Pathol 35:232–236

    Google Scholar 

  • Dong L, Pu P, Wang H, et al (2007) Cotransfection of antisense EGFR RNA and p53 gene effectively inhibits malignant glioma cell growth. Chin J Neurosurg 23:678–681

    Google Scholar 

  • Downward J (2004) Use of RNA interference libraries to investigate oncogenic signaling in mammalian cells. Oncogene 23:8376–8383

    Article  CAS  PubMed  Google Scholar 

  • Elbashir SM, Martinez J, Patkaniowska A, et al (2001) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate EMBO J 20:6877–6888

    Article  CAS  PubMed  Google Scholar 

  • Engelhard HH (1998) Antisense oligonucleotide technology: potential use for the treatment of malignant brain tumors. Cancer Control 5:163–170

    PubMed  Google Scholar 

  • Fan QW, Weiss WA (2005) RNA interference against a glioma derived allele of EGFR induces blockade at G2/M. Oncogene 24:829–837

    Article  CAS  PubMed  Google Scholar 

  • Far RK, Sczakiel G (2003) The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides. Nucleic Acid Res 31:4417–4424

    Article  Google Scholar 

  • Frederick L, Wang XY, Eley G, et al (2000) Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res 60:1383–1387

    CAS  PubMed  Google Scholar 

  • Furnari FB, Fenton T, Bachoo RM, et al (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21:2683–2710

    Article  CAS  PubMed  Google Scholar 

  • Grimm D, Kay M (2007) Combinatorial RNAi: a winning strategy for the race against evolving targets. Mol Ther 15:878–888

    CAS  PubMed  Google Scholar 

  • Halatsch ME, Schmidt U, Behnke-Mursch J, et al (2006) Epidermal growth factor receptor inhibition for the treatment of glioblastoma multiforme and other malignant brain tumours. Cancer Treat Rev 32:74–89

    Article  CAS  PubMed  Google Scholar 

  • Hill JR, Kuriyama H, Isreal MA (1999) Molecular pathology of astrocytic brain tumors. Arch Neurol 56:439–441

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo M (2005) Short interfering RNAs as a tool for cancer gene therapy. Cancer Gene Ther 12:217–227

    Article  CAS  PubMed  Google Scholar 

  • Jackson AL, Bartz SR, Schelter J, et al (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21:635–637

    Article  CAS  PubMed  Google Scholar 

  • Jansen B, Zangemeister-Wittke U (2002) Antisense therapy for cancer-the time of truth. Lancet Oncol 3:672–683

    Article  CAS  PubMed  Google Scholar 

  • Kang CS, Pu PY, Li YH, et al (2005) An in vitro study on the suppressive effect of glioma cell growth induced by plasmid-based small interference RNA (siRNA) targeting human epidermal growth factor receptor. J Neurooncol 74:267–273

    Article  CAS  PubMed  Google Scholar 

  • Kim R, Tanabe K, Emi M, et al (2004) Potential roles of antisense therapy in the molecular targeting of genes involved in cancer. Int J Oncol 24:5–17

    CAS  PubMed  Google Scholar 

  • Kintage GJ, Templeton KL, Jenkins RB (2003) Recent advances in the molecular genetics of primary gliomas. Curr Opin Oncol 15:197–203

    Article  Google Scholar 

  • Kittler R, Buchholz F (2003) RNA interference: gene silencing in the fast lane. Semin Cancer Biol 13:259–265

    Article  CAS  PubMed  Google Scholar 

  • Kondo Y, Hollingsworth EF, Kondo S (2004) Molecular targeting for malignant gliomas. Int J Oncol 24:1101–1109

    CAS  PubMed  Google Scholar 

  • Lal A, Glazer CA, Martinson HM, et al (2002) Mutant EGFR upregulates effectors of tumor invasion. Cancer Res 63:3335–3339

    Google Scholar 

  • Laskin JJ, Sandler AB (2004) Epidermal growth factor receptor: a promising target in solid tumors. Cancer Treat Rev 30:1–17

    Article  CAS  PubMed  Google Scholar 

  • Leirdal M, Sioud M (2002) Gene silencing in mammalian cells by performed small RNA duplexes. Biochem Biophys Res Commun 295:744–748

    Article  CAS  PubMed  Google Scholar 

  • Li SD, Chen YC, Hackett MJ, et al (2008) Tumor targeted delivery of siRNA by self assembled nanoparticles. Mol Ther 16:163–169

    Article  CAS  PubMed  Google Scholar 

  • Liu XW, Pu PY, Gao ZX (1998) Study on the gene expression of EGFR in human gliomas. Chin J Neurosurg 14:68–70

    Google Scholar 

  • Liu KJ, Chen CT, Hu WS, et al (2004) Expression of cytoplasmic-domain substituted epidermal growth factor receptor inhibits tumorigenecity of EGFR-overexpressed human glioblastoma multiforme. Int J Oncol 24:581–590

    PubMed  Google Scholar 

  • Liu F, Conwell CC, Yuan X, et al (2007) Novel nonviral vectors target cellular signaling pathways regulated gene expression and reduced toxicity. J Pharmacol Exp Ther 321:777–783

    Article  CAS  PubMed  Google Scholar 

  • Louis DN, Holland EC, Caircross JG (2001) Glioma classification, a molecular reappraisal. Am J Pathol 159:779–786

    CAS  PubMed  Google Scholar 

  • Ma Y, Chan CY, He ML (2007) RNA interference and antiviral therapy. World J Gastroenterol 13:5169–5179

    CAS  PubMed  Google Scholar 

  • Masiero M, Nardo G, Indraccolo S, et al (2007) RNA interference: implications for cancer treatment. Mol Aspects Med 28:143–166

    Article  CAS  PubMed  Google Scholar 

  • Mason WP, Caircross JG (2008) Invited article: the expanding impact of molecular biology on the diagnosis and treatment of gliomas. Neurology 71:365–373

    Article  PubMed  Google Scholar 

  • Miyagishi M, Hayashi M, Taira K (2003) Comparison of the suppressive effects of antisense oligonucleotides and siRNAs directed against the same targets in mammalian cells. Antisense Nucleic Acid Drug Dev 13:1–7

    Article  CAS  PubMed  Google Scholar 

  • Mocellin S, Provenzano M (2004) RNA intereference: learning gene knock-down from cell physiology. J Transl Med 2:39

    Article  PubMed  Google Scholar 

  • Moghal N, Sternberg PW (1999) Multiple positive and negative regulators of signaling by the EGF-receptor. Curr Opin Cell Biol 11:190–196

    Article  CAS  PubMed  Google Scholar 

  • Muratovska A, Eccles MR (2004) Conjugate for efficiently delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett 558:63–68

    Article  CAS  PubMed  Google Scholar 

  • Nagy P, Arndt-Jovin DJ, Jovin TM (2003) Small interfering RNAs suppress the expression of endogenous and GFP-fused epidermal growth factor receptor(erb1) and induce apoptosis in erb1-overexpressing cells. Exp Cell Res 285:39–49

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa R, Sugiyama T, Narita Y, et al (2004) Immunohistochemical analysis of the mutant epidermal growth factor, deltaEGFR, in glioblastoma. Brain Tumor Pathol 21:53–56

    Article  CAS  PubMed  Google Scholar 

  • Nozaki M, Tada M, Kobayashi H, et al (1999) Roles of the functional loss of p53 and other genes in astrocytoma tumorigenesis and progression. Neurooncol 1:124–137

    CAS  Google Scholar 

  • Ohgaki H (2005) Genetic pathways to glioblastoma. Neuropathology 25:1–7

    Article  PubMed  Google Scholar 

  • Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170:1445–1453

    Article  Google Scholar 

  • Ohgaki H, Dessen P, Jourde B, et al (2004) Genetic pathways to glioblastoma: a population based study. Cancer Res 64:6892–6899

    Article  CAS  PubMed  Google Scholar 

  • Okada Y, Hurwitz EE, Esposito JM, et al (2003) Selection pressure of Tp53 mutation and microenvironmental location influence EGFR gene amplification in human GBMs. Cancer Res 63:413–416

    CAS  PubMed  Google Scholar 

  • Pu P, Liu X, Liu A, et al (2000) Inhibitory effect of antisense epidermal growth factor receptor RNA on the proliferation of rat C6 glioma cells in vitro and in vivo. J Neurosurg 92:132–139

    Article  CAS  PubMed  Google Scholar 

  • Raizer JJ (2005) HER1/EGFR tyrosine kinase inhibitors for the treatment of glioblastoma multiforme. J Neurooncol 74:77–86

    Article  CAS  PubMed  Google Scholar 

  • Robinson R (2004) RNAi therapeutics: how likely, how soon? PLoS Biol 2:18–20

    Article  CAS  Google Scholar 

  • Sache C, Echeverri CJ (2004) Oncology studies using siRNA libraries: the dawn of RNAi-based genomics. Oncogene 23:8384–8391

    Article  Google Scholar 

  • Sumimoto H, Kawakami Y (2007) Lentiviral vector mediated RNAi and its use for cancer research. Future Oncol 3:656–664

    Article  Google Scholar 

  • Tian XX, Lam PY, Hen J, et al (1998) Antisense epidermal growth factor receptor RNA transfection in human malignant glioma cells leads to inhibition of proliferation and induction of differentiation. Neuropathol Appl Neurobiol 24:389–396

    Article  CAS  PubMed  Google Scholar 

  • Tian XX, Zhang YG, Du J, et al (2006) Effects of cotransfection of antisense EGFR and wild type PTEN cDNA on human glioblastoma cells. Neuropathology 26:178–187

    Article  PubMed  Google Scholar 

  • Tomar RS, Matta H, Chaudhary PM (2003) Use of adeno-associated viral vector for delivery of small interfering RNA. Oncogene 22:5712–5715

    Article  CAS  PubMed  Google Scholar 

  • Uprichard SL (2005) The therapeutic potential of RNA interference. FEBS Lett 579:5996–6007

    Article  CAS  PubMed  Google Scholar 

  • Vickers TA, Koo S, Bennett F, et al (2003) Efficient reduction of target RNAs by small interfering RNA and RNase H dependent antisense agents. J Biol Chem 278:7108–7118

    Article  CAS  PubMed  Google Scholar 

  • Yu JY, DeRuiter SL, Turner DL (2002) RNA interference by expression of short interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA 99:6047–6052

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang YF, Bryant J, et al (2004) Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin Cancer Res 10:3667–3677

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work is supported by Tianjin Science and Technology Committee (Grant number 05YFJZJC1002 and 06YFSZSF01100), Program for New Century Excellent Talents in University, The Ministry of Education of the People's Republic of China (NCET-07–0615).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiyu Pu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pu, P., Kang, C., Jiang, H. (2009). Suppression of EGFR Expression by Antisense RNA and RNAi. In: Erdmann, V., Reifenberger, G., Barciszewski, J. (eds) Therapeutic Ribonucleic Acids in Brain Tumors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00475-9_18

Download citation

Publish with us

Policies and ethics