Skip to main content

Multi-miRNA Hairpins and Multi-miRNA Mimics Technologies

  • Chapter
  • First Online:
MicroRNA Interference Technologies

Abstract

Multi-miRNA Hairpins technology refers to a single artificial construct that can produce multiple mature miRNAs, improving gene knockdown over single miRNAs and offering expression silence of multiple genes. This technology was concurrently developed in 2006 by Zhu's laboratory (Department of Developmental and Molecular Biology, Albert Einstein College of Medicine) [Sun D, Melegari M, Sridhar S, Rogler CE, Zhu L, Biotechniques 41:59–63, 2006] and by Xu's laboratory (Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School) [Xia XG, Zhou H, Xu Z, Biotechniques 41:64–68, 2006a]. Similar principle was later applied by my laboratory (Department of Medicine, Montreal Heart Institute, University of Montreal) in 2008 to miR-Mimics to establish the Multi-miRNA Mimics technology that is able to silence multiple genes [Chen G, Lin H, Xiao J, Luo X, Wang Z, Biotechniques 2009]. Both Multi-miRNA Hairpins and Multi-miRNA Mimics technologies belong to the “miRNA-targeting” and “miRNA-gain-of-function” strategy. These technologies were developed based on the concept ‘One-Drug, Multiple-Target’ described in Sect. 2. 3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Boden D, Pusch O, Silbermann R, Lee F, Tucker L, Ramratnam B (2004) Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins. Nucleic Acids Res 32:1154–1158.

    Article  PubMed  CAS  Google Scholar 

  • Dickins RA, Hemann MT, Zilfou JT, Simpson DR, Ibarra I, Hannon GJ, Lowe SW (2005) Probing tumor phenotypes using stable and regulated synthetic microRNAs precursors. Nat Genet 37:1289–1295.

    PubMed  CAS  Google Scholar 

  • Follenzi A, Sabatino G, Lombardo A, Boccaccio C, Naldini L (2002) Efficient gene delivery and targeted expression to hepatocytes in vivo by improved lentiviral vectors. Hum Gene Ther 13:243–260.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths-Jones S (2006) miRBase: The microRNA sequence database. Methods Mol Biol 342:29–138.

    Google Scholar 

  • Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858.

    Article  PubMed  CAS  Google Scholar 

  • Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862.

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419.

    Article  PubMed  CAS  Google Scholar 

  • Li X, Makela S, Streng T, Santti R, Poutanen M (2003) Phenotype characteristics of transgenic male mice expressing human aromatase under ubiquitin C promoter. J. Steroid Biochem Mol Biol 86:469–476.

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Lin H, Xiao J, Luo X, Wang Z (2009) Multi-miRNA-Mimics strategy offers a powerful and diverse gain-of-function of miRNAs for gene silencing. Biotechniques.

    Google Scholar 

  • Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295:868–872.

    Article  PubMed  CAS  Google Scholar 

  • McManus MT, Petersen CP, Haines BB, Chen J, Sharp PA (2002) Gene silencing using microRNA designed hairpins. RNA 8:842–850.

    Article  PubMed  CAS  Google Scholar 

  • Shi Y (2003) Mammalian RNAi for the masses. Trends Genet 19:9–12.

    Article  PubMed  Google Scholar 

  • Silva JM, Li MZ, Chang K, Ge W, Golding MC, Rickles RJ, Siolas D, Hu G, Xu Z (2005) Second-generation shRNA libraries covering the mouse and human genomes. Nat Genet 37:1281–1288.

    PubMed  CAS  Google Scholar 

  • Stegmeier F, Hu G, Rickles RJ, Hannon GJ, Elledge SJ (2005) A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc Natl Acad Sci USA 102:13212–13217.

    Article  PubMed  CAS  Google Scholar 

  • Sun D, Melegari M, Sridhar S, Rogler CE, Zhu L (2006) Multi-miRNA hairpin method that improves gene knockdown efficiency and provides linked multi-gene knockdown. Biotechniques 41:59–63.

    Article  PubMed  CAS  Google Scholar 

  • Xia XG, Zhou H, Xu ZS (2005) Promises and challenges in developing RNAi as a research tool and therapy for neurodegenerative diseases. Neurodegenerative Diseases 2:220–231.

    Article  PubMed  CAS  Google Scholar 

  • Xia XG, Zhou H, Xu Z (2006a) Multiple shRNAs expressed by an inducible pol II promoter can knock down the expression of multiple target genes. Biotechniques 41:64–68.

    Article  PubMed  CAS  Google Scholar 

  • Xia XG, Zhou H, Samper E, Melov S, Xu Z (2006b) Pol II-expressed shRNA knocks down Sod2 gene expression and causes phenotypes of the gene knockout in mice. PLoS Genetics 2:e10.

    Article  PubMed  Google Scholar 

  • Xiao J, Yang B, Lin H, Lu Y, Luo X, Wang Z (2007) Novel approaches for gene-specific interference via manipulating actions of microRNAs: Examination on the pacemaker channel genes HCN2 and HCN4. J Cell Physiol 212:285–292.

    Article  PubMed  CAS  Google Scholar 

  • Zeng Y, Cullen BR (2005a) Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences. J Biol Chem 280:27595–27603.

    Article  PubMed  CAS  Google Scholar 

  • Zeng Y, Cai X, Cullen BR (2005b) Use of RNA polymerase II to transcribe artificial microRNAs. Methods Enzymol 392:371–380.

    Article  PubMed  CAS  Google Scholar 

  • Zeng Y, Wagner EJ, Cullen BR (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 9:1327–1333.

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Xia XG, Xu Z (2005) An RNA polymerase II construct synthesizes short-hairpin RNA with a quantitative indicator and mediates highly efficient RNAi. Nucleic Acids Res 33:e62.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguo Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, Z. (2009). Multi-miRNA Hairpins and Multi-miRNA Mimics Technologies. In: MicroRNA Interference Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00489-6_5

Download citation

Publish with us

Policies and ethics