Skip to main content

Statistically Hiding Sets

  • Conference paper
Topics in Cryptology – CT-RSA 2009 (CT-RSA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5473))

Included in the following conference series:

Abstract

Zero-knowledge set is a primitive introduced by Micali, Rabin, and Kilian (FOCS 2003) which enables a prover to commit a set to a verifier, without revealing even the size of the set. Later the prover can give zero-knowledge proofs to convince the verifier of membership/non-membership of elements in/not in the committed set. We present a new primitive called Statistically Hiding Sets (SHS), similar to zero-knowledge sets, but providing an information theoretic hiding guarantee, rather than one based on efficient simulation. Then we present a new scheme for statistically hiding sets, which does not fit into the “Merkle-tree/mercurial-commitment” paradigm that has been used for all zero-knowledge set constructions so far. This not only provides efficiency gains compared to the best schemes in that paradigm, but also lets us provide statistical hiding; previous approaches required the prover to maintain growing amounts of state with each new proof for such a statistical security.

Our construction is based on an algebraic tool called trapdoor DDH groups (TDG), introduced recently by Dent and Galbraith (ANTS 2006). However the specific hardness assumptions we associate with TDG are different, and of a strong nature — strong RSA and a knowledge-of-exponent assumption. Our new knowledge-of-exponent assumption may be of independent interest. We prove this assumption in the generic group model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, p. 255. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Ateniese, G., de Medeiros, B.: Efficient group signatures without trapdoors. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 246–268. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  4. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 273–289. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Benaloh, J.C., de Mare, M.: One-way accumulators: A decentralized alternative to digital signatures. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950. Springer, Heidelberg (1995)

    Google Scholar 

  6. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, p. 61. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Camenisch, J., Michels, M.: Separability and efficiency for generic group signature schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, p. 413. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  8. Catalano, D., Dodis, Y., Visconti, I.: Mercurial commitments: Minimal assumptions and efficient constructions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 120–144. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Catalano, D., Fiore, D., Messina, M.: Zero-knowledge sets with short proofs. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 433–450. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Chase, M., Healy, A., Lysyanskaya, A., Malkin, T., Reyzin, L.: Mercurial commitments with applications to zero-knowledge sets. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 422–439. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption. In: ACM Conference on Computer and Communications Security (CCS) (1999)

    Google Scholar 

  12. Damgard, I.: Towards practical public-key cryptosystems provably-secure against chosen-ciphertext attacks. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740. Springer, Heidelberg (1993)

    Google Scholar 

  13. Dent, A.W., Galbraith, S.D.: Hidden pairings and trapdoor DDH groups. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 436–451. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  15. Galbraith, S.D., McKee, J.F.: Pairings on elliptic curves over finite commutative rings. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 392–409. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures without the random oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 123. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  17. Gennaro, R., Micali, S.: Independent zero-knowledge sets. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 34–45. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Goodrich, M.T., Tamassia, R., Hasic, J.: An efficient dynamic and distributed cryptographic accumulator. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS, vol. 2433, p. 372. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, p. 408. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  20. Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 253–269. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Liskov, M.: Updatable zero-knowledge databases. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 174–198. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  22. Micali, S., Rabin, M., Kilian, J.: Zero-knowledge sets. In: FOCS 2003 (2003)

    Google Scholar 

  23. Mireles, D.: An attack on disguised elliptic curves. Cryptology ePrint Archive, Report 2006/469 (2006), http://eprint.iacr.org/

  24. Ostrovsky, R., Rackoff, C., Smith, A.: Efficient consistency proofs for generalized queries on a committed database. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1041–1053. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  25. Prabhakaran, M., Xue, R.: Statistical zero-knowledge sets using trapdoor DDH groups. Cryptology ePrint Archive, Report 2007/349 (2007), http://eprint.iacr.org/

  26. Rivest, R.L.: On the notion of pseudo-free groups. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 505–521. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  27. Xue, R., Li, N., Li, J.: A new construction of zero knowledge sets secure in random oracle model. In: The First International Symposium of Data, Privacy, & E-Commerce. IEEE Press, Los Alamitos (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Prabhakaran, M., Xue, R. (2009). Statistically Hiding Sets. In: Fischlin, M. (eds) Topics in Cryptology – CT-RSA 2009. CT-RSA 2009. Lecture Notes in Computer Science, vol 5473. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00862-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00862-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00861-0

  • Online ISBN: 978-3-642-00862-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics