Skip to main content

Indications for Noninvasive Respiratory Support

  • Chapter
  • First Online:
Pediatric and Neonatal Mechanical Ventilation

Abstract

The two main indications for respiratory support in preterm infants are respiratory distress syndrome (RDS) and apnea of prematurity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghai ZH, Saslow JG, Nakhla T et al (2006) Synchronized nasal intermittent positive pressure ventilation (SNIPPV) decreases work of breathing (WOB) in premature infants with respiratory distress syndrome (RDS) compared to nasal continuous positive airway pressure (NCPAP). Pediatr Pulmonol 41(9):875–881

    PubMed  Google Scholar 

  • Ali N, Claure N, Alegria X, D’Ugard C, Organero R, Bancalari E (2007) Effects of non-invasive pressure support ventilation (NI-PSV) on ventilation and respiratory effort in very low birth weight infants. Pediatr Pulmonol 42(8):704–710

    PubMed  Google Scholar 

  • Aly H, Massaro AN, Patel K, El-Mohandes AA (2005) Is it safer to intubate premature infants in the delivery room? Pediatrics 115(6):1660–1665

    PubMed  Google Scholar 

  • Ammari A, Suri M, Milisavjevic V et al (2005) Variables associated with the failure of nasal CPAP in VLBW infants. J Pediatr 147:341–347

    PubMed  Google Scholar 

  • Avery ME, Tooley WH, Keller JB et al (1987) Is chronic lung disease in low birth weight infants preventable? A survey of eight centers. Pediatrics 79(1):26–30

    CAS  PubMed  Google Scholar 

  • Barrington KJ, Bull D, Finer NN (2001) Randomized trial of nasal synchronized intermittent mandatory ventilation compared with continuous positive airway pressure after extubation of very low birth weight infants. Pediatrics 107:638–641

    CAS  PubMed  Google Scholar 

  • Bhandari V, Gavino RG, Nedrelow JH, Pallela P, Salvador A, Ehrenkranz RA, Brodsky NL (2007) A randomized controlled trial of synchronized nasal intermittent positive pressure ventilation in RDS. J Perinatol 27(11):697–703

    CAS  PubMed  Google Scholar 

  • Bohlin K, Gudmundsdottir T, Katz-Salamon M, Jonsson B, Blennow M (2007) Implementation of surfactant treatment during continuous positive airway pressure. J Perinatol 27(7):422–427

    CAS  PubMed  Google Scholar 

  • Bollen CW, Uiterwaal CS, van Vught AJ (2007) Meta-regression analysis of high-frequency ventilation vs. conventional ventilation in infant respiratory distress syndrome. Intensive Care Med 33(4):680–688

    PubMed Central  PubMed  Google Scholar 

  • Chard T, Soe A, Costeloe K (1997) The risk of neonatal death and respiratory distress syndrome in relation to birth weight of preterm infants. Am J Perinatol 14(9):523–526

    CAS  PubMed  Google Scholar 

  • Cools F, Askie LM, Offringa M, Asselin JM, Calvert SA, Courtney SE, Dani C, Durand DJ, Gerstmann DR, Henderson-Smart DJ, Marlow N, Peacock JL, Pillow JJ, Soll RF, Thome UH, Truffert P, Schreiber MD, Van Reempts P, Vendettuoli V, Vento G, PreVILIG collaboration (2010) Elective high-frequency oscillatory versus conventional ventilation in preterm infants: a systematic review and meta-analysis of individual patients’ data. Lancet 375(9731):2082–2091, Review

    PubMed  Google Scholar 

  • Crowley P, Chalmers I, Keirse MJ (1990) The effects of corticosteroid administration before preterm delivery: an overview of the evidence from controlled trials. Br J Obstet Gynaecol 97:11–25

    CAS  PubMed  Google Scholar 

  • Dani C, Bertini G, Pezzati M, Cecchi A, Caviglioli C, Rubaltelli FF (2004) Early extubation and nasal continuous positive airway pressure after surfactant treatment for respiratory distress syndrome among preterm infants <30 weeks’ gestation. Pediatrics 113(6):e560–e563

    PubMed  Google Scholar 

  • Davis PG, Henderson-Smart DJ (2003) Nasal continuous positive airways pressure immediately after extubation for preventing morbidity in preterm infants. Cochrane Database Syst Rev (2):CD000143

    Google Scholar 

  • Davis PG, Lemyre B, De Paoli AG (2001) Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for preterm neonates after extubation (Review). Cochrane Database Sys Rev (3);CD003212

    Google Scholar 

  • De Klerk AM, De Klerk RK (2001) Nasal continuous positive airway pressure and outcomes of preterm infants. J Paediatr Child Health 37:161–167

    PubMed  Google Scholar 

  • De Paoli AG, Davis PG, Lemyre B (2003) Nasal continuous positive airway pressure versus nasal intermittent positive ventilation for preterm neonates: a systematic review and meta-analysis. Acta Paediatr 92:70–75

    PubMed  Google Scholar 

  • Dimitriou G, Greenough A, Kavvadia V, Laubscher B, Alexiou C, Pavlou V, Mantagos S (2000) Elective use of nasal continuous positive airways pressure following extubation of preterm infants. Eur J Pediatr 159(6):434–439

    CAS  PubMed  Google Scholar 

  • Dunn MS, Reilly MC (2003) Approaches to the initial respiratory management of preterm neonates. Pediatr Respir Rev 4:2–8

    Google Scholar 

  • Finer NN, Rich W, Craft A, Henderson C (2001) Comparison of methods of bag and mask ventilation for neonatal resuscitation. Resuscitation 49(3):299–305

    CAS  PubMed  Google Scholar 

  • Finer NN, Carlo WA, Duara S, National Institute of Child Health and Human Development Neonatal Research Network et al (2004) Delivery room continuous positive airway pressure/positive end-expiratory pressure in extremely low birth weight infants: a feasibility trial. Pediatrics 114(3):651–657

    PubMed  Google Scholar 

  • Friedlich P, Lecart C, Posen R, Ramicone E, Chan L, Ramanathan R (1999) A randomized trial of nasopharyngeal-synchronized intermittent mandatory ventilation versus nasopharyngeal continuous positive airway pressure in very low birth weight infants after extubation. J Perinatol 19:413–418

    CAS  PubMed  Google Scholar 

  • Gaon P, Lee S, Hannan S et al (1999) Assessment of effect of nasal continuous positive pressure on laryngeal opening using fibre optic laryngoscopy. Arch Dis Child Fetal Neonatal Ed 80:F230–F232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geary C, Caskey M, Fonseca R, Malloy M (2008) Decreased incidence of bronchopulmonary dysplasia after early management changes, including surfactant and nasal continuous positive airway pressure treatment at delivery, lowered oxygen saturation goals, and early amino acid administration: a historical cohort study. Pediatrics 121(1):89–96

    PubMed  Google Scholar 

  • Gittermann MK, Fusch C, Gittermann AR, Regazzoni BM, Moessinger AC (1997) Early nasal continuous positive airway pressure treatment reduces the need for intubation in very low birth weight infants. Eur J Pediatr 156:384–388

    CAS  PubMed  Google Scholar 

  • Greenough A, Dimitriou G, Prendergast M, Milner AD (2008) Synchronized mechanical ventilation for respiratory support in newborn infants. Cochrane Database Syst Rev (1):CD000456. Review

    Google Scholar 

  • Hack M, Horbar JD, Malloy MH, Tyson JE, Wright E, Wright L (1991) Very low birth weight outcomes of the National Institute of Child Health and Human Development Neonatal Network. Pediatrics 87(5):587–597

    CAS  PubMed  Google Scholar 

  • Higgins RD, Richter SE, Davis JM (1991) Nasal continuous positive airway pressure facilitates extubation of very low birth weight neonates. Pediatrics 88:999–1003

    CAS  PubMed  Google Scholar 

  • Ho JJ, Subramaniam P, Henderson-Smart DJ, Davis PG (2000) Continuous distending pressure for respiratory distress syndrome in preterm infants. Cochrane Database Syst Rev (4):CD002271

    Google Scholar 

  • Hoehn T, Krause MF (2000) Effective elimination of carbon dioxide by nasopharyngeal high-frequency ventilation. Respir Med 94(11):1132–1134

    CAS  PubMed  Google Scholar 

  • Jasin LR, Kern S, Thompson S, Walter C, Rone JM, Yohannan MD (2008) Subcutaneous scalp emphysema, pneumo-orbitis and pneumocephalus in a neonate on high humidity high flow nasal cannula. J Perinatol 28:779–781

    CAS  PubMed  Google Scholar 

  • Jobe AH (1993) Pulmonary surfactant therapy. N Engl J Med 328(12):861–868, Review

    CAS  PubMed  Google Scholar 

  • Jobe AH, Kramer BW, Moss TJ, Newnham JP, Ikegami M (2002) Decreased indicators of lung injury with continuous positive expiratory pressure in preterm lambs. Pediatr Res 52:387–392

    PubMed  Google Scholar 

  • Kari MA, Hallman M, Eronen M, Teramo K, Virtanen M, Konisto M, Ikonen RS (1994) Prenatal dexamethasone treatment in conjunction with rescue therapy of human surfactant: a randomized placebo-controlled multicenter study. Pediatrics 93:730–736

    CAS  PubMed  Google Scholar 

  • Khalaf MN, Brodsky N, Hurley J, Bhandari V (2001) A prospective randomized, controlled trial comparing synchronized nasal intermittent positive pressure ventilation versus nasal continuous positive airway pressure as modes of extubation. Pediatrics 108:13–17

    CAS  PubMed  Google Scholar 

  • Kiciman NM, Andeasson B, Bernstein G et al (1998) Thoracoabdominal motion in newborns during ventilation delivered by endotracheal tube or nasal prongs. Pediatr Pulmonol 25:175–181

    CAS  PubMed  Google Scholar 

  • Kirchner L, Weninger M, Unterasinger L et al (2005) Is the use of early nasal CPAP associated with lower rates of chronic lung disease and retinopathy of prematurity? Nine years of experience with the Vermont Oxford Neonatal Network. J Perinat Med 33:60–66

    PubMed  Google Scholar 

  • Kribs A (2009) Early administration of surfactant in spontaneous breathing with nCPAP through a thin endotracheal catheter – an option in the treatment of RDS in ELBW infants? J Perinatol 29(3):256

    CAS  PubMed  Google Scholar 

  • Kribs A, Pillekamp F, H¨unseler C, Vierzig A, Roth B (2007) Early administration of surfactant in spontaneous breathing with nCPAP: feasibility and outcome in extremely premature infants (postmenstrual age </ = 27 weeks). Paediatr Anaesth 17:364–369

    PubMed  Google Scholar 

  • Kribs A, Vierzig A, Hünseler C, Eifinger F, Welzing L, Stützer H, Roth B (2008) Early surfactant in spontaneously breathing with nCPAP in ELBW infants – a single centre four year experience. Acta Paediatr 97(3):293–298

    PubMed  Google Scholar 

  • Kugelman A, Feferkorn I, Riskin A, Chistyakov I, Kaufman B, Bader D (2007) Nasal intermittent mandatory ventilation versus nasal continuous positive airway pressure for respiratory distress syndrome: a randomized, controlled, prospective study. J Pediatr 150:521–526

    PubMed  Google Scholar 

  • Lee K, Khoshnood B, Wall SN, Chang Y, Hsieh HL, Singh JK (1999) Trend in mortality from respiratory distress syndrome in the United States, 1970–1995. J Pediatr 134:434–440

    CAS  PubMed  Google Scholar 

  • Lemyre B, Davis PG, De Paoli AG (2002) Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for apnea of prematurity. Cochrane Database Syst Rev (1):CD002272

    Google Scholar 

  • Lin CH, Wang ST, Lin YJ, Yeh TF (1998) Efficacy of nasal intermittent positive pressure ventilation in treating apnea of prematurity. Pediatr Pulmonol 26:349–353

    CAS  PubMed  Google Scholar 

  • Lindner W, Vossbeck S, Hummler H, Pohlandt F (1999) Delivery room management of extremely low birth weight infants: spontaneous breathing or intubation ? Pediatrics 103:961–967

    CAS  PubMed  Google Scholar 

  • Locke R, Greenspan JS, Shaffer TH, Rubenstein SD, Wolfson MR (1991) Effect of nasal CPAP on thoracoabdominal motion in neonates with respiratory insufficiency. Pediatr Pulmonol 11(3):259–264

    CAS  PubMed  Google Scholar 

  • Locke RG, Wolfson MR, Shaffer TH, Rubenstein SD, Greenspan JS (1993) Inadvertent administration of positive end-expiratory pressure during nasal cannula flow. Pediatrics 91:135–138

    CAS  PubMed  Google Scholar 

  • Majnemer A, Riley P, Shevell M, Birnbaum R, Greenstone H, Coates AL (2000) Severe bronchopulmonary dysplasia increases risk for later neurological and motor sequelae in preterm survivors. Dev Med Child Neurol 42(1):53–60

    CAS  PubMed  Google Scholar 

  • Miller MJ, Carlo WA, Martin RJ (1985) Continuous positive airway pressure selectively reduces obstructive apnea in preterm infants. J Pediatr 106:91–94

    CAS  PubMed  Google Scholar 

  • Miller MJ, DiFiore JM, Strohl KP et al (1990) Effects of nasal CPAP on supraglottic and total pulmonary resistance in preterm infants. J Appl Physiol 68:141–146

    CAS  PubMed  Google Scholar 

  • Moretti C, Gizzi C, Papoff P et al (1999) Comparing the effects of nasal synchronized intermittent positive pressure ventilation (nSIPPV) and nasal continuous positive airway pressure (nCPAP) after extubation in very low birth weight infants. Early Hum Dev 56:167–177

    CAS  PubMed  Google Scholar 

  • Moretti C, Giannini L, Fassi C, Gizzi C, Papoff P, Colarizi P (2008) Nasal flow-synchronized intermittent positive pressure ventilation to facilitate weaning in very low-birth weight infants: unmasked randomized controlled trial. Pediatr Int 50(1):85–91

    PubMed  Google Scholar 

  • Morley CJ, Davis PG, Doyle LW, Brion LP, Hascoet JM, Carlin JB, COIN Trial Investigators (2008) Nasal CPAP or intubation at birth for very preterm infants. N Engl J Med 358(7):700–708

    CAS  PubMed  Google Scholar 

  • Murray PG, Stewart MJ (2008) Use of nasal continuous positive airway pressure during retrieval of neonates with acute respiratory distress. Pediatrics 121(4):e754–e758

    PubMed  Google Scholar 

  • Nold JL, Meyers PA, Worwa CT et al (2007) Decreased lung injury after surfactant in piglets treated with continuous positive airway pressure or synchronized intermittent mandatory ventilation. Neonatology 92:19–25

    PubMed  Google Scholar 

  • Pandit PB, Courtney SE, Pyon KH, Saslow JG, Habib RH (2001) Work of breathing during constant- and variable-flow nasal continuous positive airway pressure in preterm neonates. Pediatrics 108(3):682–685

    CAS  PubMed  Google Scholar 

  • Richardson CP, Jung AL (1978) Effects of continuous positive airway pressure on pulmonary function and blood gases of infants with respiratory distress syndrome. Pediatr Res 12:771–774

    CAS  PubMed  Google Scholar 

  • Richardson P, Wyman ML, Jung AL (1980) Functional residual capacity and severity of respiratory distress syndrome in infants. Crit Care Med 8:637–640

    CAS  PubMed  Google Scholar 

  • Roberts D, Dalziel S (2006) Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev (3):CD004454

    Google Scholar 

  • Rojas MA, Lozano JM, Rojas MX, Laughon M, Bose CL, Rondon MA, Charry L, Bastidas JA, Perez LA, Rojas C, Ovalle O, Celis LA, Garcia-Harker J, Jaramillo ML, Colombian Neonatal Research Network (2009) Very early surfactant without mandatory ventilation in premature infants treated with early continuous positive airway pressure: a randomized, controlled trial. Pediatrics 123(1):137–142

    PubMed  Google Scholar 

  • Ryan CA, Finer NN, Peters KL (1989) Nasal intermittent positive-pressure ventilation offers no advantages over nasal continuous positive airway pressure in apnea of prematurity. Am J Dis Child 143:1196–1198

    CAS  PubMed  Google Scholar 

  • Sandri F, Plavka R, Simeoni U, CURPAP Advisory Board (2008) The CURPAP study: an international randomized controlled trial to evaluate the efficacy of combining prophylactic surfactant and early nasal continuous positive airway pressure in very preterm infants. Neonatology 94(1):60–62

    PubMed  Google Scholar 

  • Santin R, Brodsky N, Bhandari V (2004) A prospective observational pilot study of synchronized nasal intermittent positive pressure ventilation (SNIPPV) as a primary mode of ventilation in infants > or = 28 weeks with respiratory distress syndrome (RDS). J Perinatol 24(8):487–493

    PubMed  Google Scholar 

  • Saslow JG, Aghai ZH, Nakhla TA, Hart JJ, Lawrysh R, Stahl GE, Pyon KH (2006) Work of breathing using high-flow nasal cannula in preterm infants. J Perinatol 26(8):476–480

    CAS  PubMed  Google Scholar 

  • Shoemaker MT, Pierce MR, Yoder BA, DiGeronimo RJ (2007) High flow nasal cannula versus nasal CPAP for neonatal respiratory disease: a retrospective study. J Perinatol 27(2):85–91

    CAS  PubMed  Google Scholar 

  • Soll R (1995) Clinical trials of surfactant therapy in the newborn. In: Robertson B, Taeusch H (eds) Surfactant therapy for lung disease. Marcel Dekker, New York, pp 407–441

    Google Scholar 

  • Soll RF, Morley CJ (2001) Prophylactic versus selective use of surfactant in preventing morbidity and mortality in preterm infants. Cochrane Database Syst Rev (2):CD000510

    Google Scholar 

  • Sreenan C, Lemke RP, Hudson-Mason A, Osiovich H (2001) High-flow nasal cannulae in the management of apnea of prematurity: a comparison with conventional nasal continuous positive airway pressure. Pediatrics 107:1081–1085

    CAS  PubMed  Google Scholar 

  • Stevens TP, Harrington EW, Blennow M, Soll RF (2007) Early surfactant administration with brief ventilation vs. selective surfactant and continued mechanical ventilation for preterm infants with or at risk for respiratory distress syndrome. Cochrane Database Syst Rev (4):CD003063. Review

    Google Scholar 

  • Subramaniam P, Henderson-Smart DJ, Davis PG (2005) Prophylactic nasal continuous positive airways pressure for preventing morbidity and mortality in very preterm infants. Cochrane Database Syst Rev (3):CD001243

    Google Scholar 

  • SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network, Finer NN, Carlo WA, Walsh MC, Rich W, Gantz MG, Laptook AR, Yoder BA, Faix RG, Das A, Poole WK, Donovan EF, Newman NS, Ambalavanan N, Frantz ID, Buchter S, Sánchez PJ, Kennedy KA, Laroia N, Poindexter BB, Cotten CM, Van Meurs KP, Duara S, Narendran V, Sood BG, O’Shea TM, Bell EF, Bhandari V, Watterberg KL, Higgins RD (2010) Early CPAP versus surfactant in extremely preterm infants. N Engl J Med 362(21):1970–1979, Erratum in: N Engl J Med. 2010;362(23):2235

    CAS  PubMed  Google Scholar 

  • te Pas AB, Walther FJ (2007) A randomized, controlled trial of delivery-room respiratory management in very preterm infants. Pediatrics 120(2):322–329, Erratum in: Pediatrics. 2007;120(4):936

    Google Scholar 

  • van der Hoeven M, Brouwer E, Blanco CE (1998) Nasal high frequency ventilation in neonates with moderate respiratory insufficiency. Arch Dis Child Fetal Neonatal Ed 79(1):F61–F63

    PubMed Central  PubMed  Google Scholar 

  • Van Marter LJ, Allred EN, Pagano M et al (2000) Do clinical markers of barotrauma and oxygen toxicity explain interhospital variation in rates of chronic lung disease? The Neonatology Committee for the Developmental Network. Pediatrics 105(6):1194–1201

    PubMed  Google Scholar 

  • Verder H, Albertsen P, Ebbesen F et al (1999) Nasal continuous positive airway pressure and early surfactant therapy for respiratory distress syndrome in newborns of less than 30 weeks’ gestation. Pediatrics 103(2):E24

    CAS  PubMed  Google Scholar 

  • Woodhead DD, Lambert DK, Clark JM, Christensen RD (2006) Comparing two methods of delivering high-flow gas therapy by nasal cannula following endotracheal extubation: a prospective, randomized, masked, crossover trial. J Perinatol 26(8):481–485

    CAS  PubMed  Google Scholar 

The Pediatric Patient

  • Akingbola OA, Hopkins RL (2001) Pediatric noninvasive positive pressure ventilation. Pediatr Crit Care Med 2:164–169

    PubMed  Google Scholar 

  • Akingbola OA, Simakajornboon N, Hadley EF Jr, Hopkins RL (2002) Noninvasive positive-pressure ventilation in pediatric status asthmaticus. Pediatr Crit Care Med 3:181–184

    PubMed  Google Scholar 

  • Ambrosino N, Rossi A (2002) Proportional assist ventilation (PAV): a significant advance or a futile struggle between logic and practice? Thorax 57:272–276

    CAS  PubMed Central  PubMed  Google Scholar 

  • American Thoracic Society (1999) Idiopathic congenital central hypoventilation syndrome – diagnosis and management. Am J Respir Crit Care Med 160:368–373

    Google Scholar 

  • American Thoracic Society, European Respiratory Society, European Society of Intensive Care Medicine and Societé de Réanimation de langue francaise (2001) International Consensus conferences in intensive care medicine: non-invasive positive pressure ventilation in acute respiratory failure. Am J Respir Crit Care Med 163:283–291

    Google Scholar 

  • Andrews TM (1995) Airway obstruction in craniofacial anomalies. In: Meyer CM III (ed) The pediatric airway. 2nd ed. Philadelphia: J.B. Lippincott, pp 247–261

    Google Scholar 

  • Antonelli M, Conti G (2000) Noninvasive positive pressure ventilation as treatment for acute respiratory failure in critically ill patients. Crit Care 4:15–22

    CAS  PubMed Central  PubMed  Google Scholar 

  • Antonelli M, Conti G, Esquinas A, Montini L, Maggiore SM, Bello G (2007) A multiple-center survey on the use in clinical practice of noninvasive ventilation as a first-line intervention for acute respiratory distress syndrome. Crit Care Med 35:18–25

    PubMed  Google Scholar 

  • Bach JR, Niranjian V (2002) Noninvasive ventilation in children. In: Bach JR (ed) Noninvasive mechanical ventilation. Hanley & Belfus, Philadelphia, pp 203–222

    Google Scholar 

  • Barreiro TJ, Gemmel DJ (2007) Noninvasive ventilation. Crit Care Clin 23:201–222

    PubMed  Google Scholar 

  • Beckerman RC, Brouillette RT, Hunt CE (eds) (1992) Respiratory control disorders in infants and children. Williams & Wilkins, Baltimore

    Google Scholar 

  • Beers SL, Abramo TJ, Bracken A, Wiebe RA (2007) Bilevel positive airway pressure in the treatment of status asthmaticus in pediatrics. Am J Emerg Med 25:6–9

    PubMed  Google Scholar 

  • British thoracic Society guideline (2002) Non invasive ventilation in acute respiratory setting. Thorax 57:192–211

    Google Scholar 

  • Bunn HJ, Roberts P, Thomson AH (2004) Noninvasive ventilation for the management of pulmonary hypertension associated with congenital heart disease in children. Pediatr Cardiol 25:357–359

    CAS  PubMed  Google Scholar 

  • Cambonie G, Milési C, Jaber S, Amsallem F, Barbotte E, Picaud JC, Matecki S (2008) Nasal continuous positive airway pressure decreases respiratory muscles overload in young infants with severe acute viral bronchiolitis. Intensive Care Med 34:1865–1872

    PubMed  Google Scholar 

  • Campion A, Huvenna H, Letemtres S, Noizet O, Biroche A, Diependaele JF (2006) Non invasive ventilation in infant with severe infection presumable due to respiratory syncytial virus: feasibility and failure criteria. Arch Pediatr 13:1404–1409

    CAS  PubMed  Google Scholar 

  • Carroll CL, Schramm CM (2006) Noninvasive positive pressure ventilation for the treatment of status asthmaticus in children. Ann Allergy Asthma Immunol 96:454–459

    CAS  PubMed  Google Scholar 

  • Chidini G, Calderini E, Cesana BM, Gandini C, Prandi E, Pelosi P (2010) Noninvasive continuous positive airway pressure in acute respiratory failure: helmet versus facial mask. Pediatrics 126:e330–e336, Epub 2010 Jul 26

    PubMed  Google Scholar 

  • Codazzi D, Nacoti M, Passoni M, Bonanomi E, Rota Sperti L, Fumagalli R (2006) Continuous positive airway pressure with modified helmet for treatment of hypoxemic acute respiratory failure in infants and a preschool population: a feasibility study. Pediatr Crit Care Med 7:455–460

    PubMed  Google Scholar 

  • Crummy F, Naughton MT (2007) Non-invasive positive pressure ventilation for acute respiratory failure: justified or just hot air? Intern Med J 37:112–118

    CAS  PubMed  Google Scholar 

  • Delclaux C, L’Her E, Alberti C, Mancebo J, Abroug F, Conti G (2000) Treatment of acute hypoxemic nonhypercapnic respiratory insufficiency with continuous positive airway pressure delivered by a face mask: a randomized controlled trial. JAMA 284:2352–2360

    CAS  PubMed  Google Scholar 

  • Donna-Schwake C, Podlewski P, Voit T, Mellies U (2008) Non-invasive ventilation reduces respiratory tract infections in children with neuromuscular disorders. Pediatr Pulmonol 43:67–71

    Google Scholar 

  • Elliot MW, Confalonieri M, Nava S (2002) Where to perform noninvasive ventilation? Eur Respir J 19:1159–1166

    Google Scholar 

  • Essouri S, Nicot F, Clement A, Garabedian EN, Roger G, Lofaso F (2005) Noninvasive positive pressure ventilation in infants with upper obstruction: comparison of continuous and bilevel positive pressure. Intensive Care Med 31:574–580

    PubMed  Google Scholar 

  • Essouri S, Chevret L, Durand P, Haas V, Fauroux B, Devictor D (2006) Noninvasive positive pressure ventilation: five years of experience in a pediatric intensive care unit. Pediatr Crit Care Med 7:329–334

    PubMed  Google Scholar 

  • Estêvão MH (2000) Ventilação Não Invasiva no Domicílio em Pediatria. Acta Pediatr Port 31(2):135–141

    Google Scholar 

  • Ezingeard E, Diconne E, Guymarc’h S, Venet C, Page D, Gery P et al (2006) Weaning from mechanical ventilation with pressure support in patients failing a T-tube trial of spontaneous breathing. Intensive Care Med 32:165–169

    PubMed  Google Scholar 

  • Fauroux B, Sardet A, Foret D (1995) Home treatment for chronic respiratory failure in children: a prospective study. Eur Respir J 8:2062–2066

    CAS  PubMed  Google Scholar 

  • Fauroux B, Boule M, Lofaso F (1999) Chest physiotherapy in cystic fibrosis: improved tolerance with nasal pressure support ventilation. Pediatrics 193:E32

    Google Scholar 

  • Fauroux B, Pigeot J, Polkey MI (2001) Chronic stridor caused by laryngomalacia in children. Am J Respir Crit Care Med 164:1874–1878

    CAS  PubMed  Google Scholar 

  • Fauroux B, Boffa C, Desguerre I, Estournet B, Trang H (2003) Long-term noninvasive mechanical ventilation for children at home: a national survey. Pediatr Pulmonol 35:119–125

    CAS  PubMed  Google Scholar 

  • Fauroux B, Burgel Fauroux B, Burgel PR, Boelle PY, Cracowski C, Murris-Espin M, Nove-Josserand R, Stremler N, Derlich L, Giovanetti P, Clément A, Chronic Respiratory Insufficiency Group of the French National Cystic Fibrosis Federation (2008) Practice of noninvasive ventilation for cystic fibrosis: a nationwide survey in France. Respir Care 53:1482–1489

    PubMed  Google Scholar 

  • Ferrer M, Esquinas A, Arancibia F, Abuer TT, Gonzalez G, Carrillo A (2003a) Noninvasive ventilation during persisting weaning failure: a randomized controlled trial. Am J Respir Crit Care Med 168:70–76

    PubMed  Google Scholar 

  • Ferrer M, Esquinas A, Leon M, Gonzalez G, Alarcon A, Torres A (2003b) Noninvasive ventilation in severe hypoxemic respiratory failure: a randomized clinical trial. Am J Respir Crit Care Med 168:1438–1444

    PubMed  Google Scholar 

  • Girault C, Daudenthun I, CHevron V, Tamion F, Leroy J, Bonmarchand G (1999) Noninvasive ventilation as a systematic extubation and weaning technique in acute-on-chronic respiratory failure; a prospective, randomized study. Am J Respir Crit Care Med 160:86–92

    CAS  PubMed  Google Scholar 

  • Gozal D (1997) Nocturnal ventilatory support in patients with cystic fibrosis: a comparison with supplemental oxygen. Eur Respir J 10:1999–2003

    CAS  PubMed  Google Scholar 

  • Gozal D (1998) Congenital central hypoventilation syndrome: an update. Pediatr Pulmonol 26:273–282

    CAS  PubMed  Google Scholar 

  • Gregoretti C, Pelosi P, Chidini G, Bignamini E, Calderini E (2010) Non-invasive ventilation in pediatric intensive care. Minerva Pediatr 62:437–458

    CAS  PubMed  Google Scholar 

  • Hamel DS, Klonin H (2006) The role of noninvasive ventilation for acute respiratory failure. Respir Care Clin N Am 12:421–435

    PubMed  Google Scholar 

  • International consensus conferences in intensive care medicine (2001) Noninvasive Positive pressure ventilation in acute respiratory failure. Am J Respir Crit Care Med 163:283–291

    Google Scholar 

  • Jardine E, Wallis C (1998) Core guidelines for the discharge home of the child on long term assisted ventilation in the United Kingdom. Thorax 53:762–767

    CAS  PubMed Central  PubMed  Google Scholar 

  • Javouhey E, Barats A, Richard N, Stamm D, Floret D (2008) Non-invasive ventilation as primary ventilatory support for infants with severe bronchiolitis. Intensive Care Med 34:1608–1614

    PubMed  Google Scholar 

  • Javouhey E, Massenavette B, Binoche A, Desprez P, Ramadan-Ghostine G, Guillermet C, Floret D, Leclerc F (2009) Non invasive ventilation in children with acute respiratory failure during RSV epidemic period: a prospective multicenter study. Arch Pediatr 16:729–731

    CAS  PubMed  Google Scholar 

  • Larrar S, Essouri S, Durand P, Chevret L, Haas V, Chabernaud JL (2006) Effects of nasal continuous positive airway pressure ventilation in infants with severe acute bronchiolitis. Arch Pediatr 13:1397–1403

    CAS  PubMed  Google Scholar 

  • Loh LE, Chan YH, Chan I (2007) Noninvasive ventilation in children: a review. J Pediatr (Rio J) 83(2 suppl):S91–S99

    Google Scholar 

  • López-Herce Cid J, Carrillo Álvarez A (2003) Nuevas modalidades de ventilación mecánica. An Pediatr (Barc) 59:82–102

    Google Scholar 

  • Macieira L, Estêvão MH (2000) Síndrome de Down e Obstrução respiratória. Acta Pediatr Port 31:269–272

    Google Scholar 

  • Martinon Torres F, Busto Cuiñas MM, Rodriguez Nuñez A, Martinón Sánchez JM (2009) Heliox. In: Lopez J, Calvo C, Baltodano A, Rey C, Rodriguez A, Lorente MJ (eds) Manual de Cuidados Intensivos Pediátricos, 3rd edn. Editorial Publimed, Madrid, pp 703–709

    Google Scholar 

  • Martinón-Torres F, Martinón Sánchez JM (2007) Helium: utility and indications. In: Casado F (ed) Urgencias y tratamiento del niño grave: síntomas guía, técnicas y procedimientos, 2nd edn. Editorial Ergon, Madrid, pp 248–254

    Google Scholar 

  • Martinon-Torres F, Fernandez M, Saavedra E, Granero M, Martinon Sánchez JM (2003) Status asthmaticus. An Pediatr (Barc) 58:1–13

    Google Scholar 

  • Martinon-Torres F, Rodriguez-Nunez A, Martinon-Sanchez JM (2006) Nasal continuous positive airway pressure with heliox in infants with acute bronchiolitis. Respir Med 100:1458–1462

    PubMed  Google Scholar 

  • Martinon-Torres F, Rodriguez-Nunez A, Martinon-Sanchez JM (2008) Nasal continuous positive airway pressure with heliox versus air-oxygen: a crossover study. Pediatrics 121:1190–1195

    Google Scholar 

  • Mayordomo-Colunga J, Medina A, Rey C, Díaz JJ, Concha A, Los Arcos M, Menéndez S (2009a) Predictive factors of non invasive ventilation failure in critically ill children: a prospective epidemiological study. Intensive Care Med 35:527–536

    PubMed  Google Scholar 

  • Mayordomo-Colunga J, Medina A, Rey C, Los Arcos M, Concha A, Menéndez S (2009b) Success and failure predictors of non-invasive ventilation in acute bronchiolitis. An Pediatr (Barc) 70:34–39

    CAS  Google Scholar 

  • Medina Villanueva A, Prieto Espunes S, Los Arcos Solas M, Rey Galan C, Concha Torre A, Menendez Cuervo S (2005) Aplicación de la ventilación no invasiva en una unidad de cuidados intensivos pediátricos. An Pediatr (Barc) 62:13–19

    CAS  Google Scholar 

  • Medina A, Pons M, Martinon-Torres F (2009) Non-invasive ventilation in pediatrics, 2nd edn. Ergon, Madrid

    Google Scholar 

  • Meert AP, Berghmans T, Hardy M, Markiewicz E, Sculier JP (2006) Noninvasive ventilation for cancer patients with life-support techniques limitation. Support Care Cancer 14:167–171

    PubMed  Google Scholar 

  • Nava S, Cuomo AM (2004) Acute respiratory failure in the cancer patient: the role of non-invasive mechanical ventilation. Crit Rev Oncol Hematol 51:91–103

    PubMed  Google Scholar 

  • Nava S, Gregoretti C, Fanfulla F, Squadrone E, Grassi M, Carlucci A et al (2005) Noninvasive ventilation to prevent respiratory failure after extubation in high-risk patients. Crit Care Med 33:2465–2470

    PubMed  Google Scholar 

  • Nava S, Navalesi P, Conti G (2006) Time of non-invasive ventilation. Intensive Care Med 32:361–370

    PubMed  Google Scholar 

  • Norregaard O (2002) Noninvasive ventilation in children. Eur Respir J 20:1332–1342

    CAS  PubMed  Google Scholar 

  • Pancera CF, Hayashi M, Fregnani JH, Negri EM, Deheinzelin D, de Camargo B (2008) Noninvasive ventilation in immunocompromised pediatric patients: eight years of experience in a pediatric oncology intensive care unit. J Pediatr Hematol Oncol 30:533–538

    PubMed  Google Scholar 

  • Piastra M, Antonelli M, Chiaretti A, Polidori G, Polidori L, Conti G (2004) Treatment of acute respiratory failure by helmet-delivered non-invasive pressure support ventilation in children with acute leukemia: a pilot study. Intensive Care Med 30:472–476

    PubMed  Google Scholar 

  • Piastra M, Antonelli M, Caresta E, Chiaretti A, Polidori G, Conti G (2006) Noninvasive ventilation in childhood acute neuromuscular respiratory failure: a pilot study. Respiration 73:791–798

    CAS  PubMed  Google Scholar 

  • Piastra M, De Luca D, Pietrini D, Pulitanò S, D’Arrigo S, Mancino A, Conti G (2009) Noninvasive pressure-support ventilation in immunocompromised children with ARDS: a feasibility study. Intensive Care Med 35:1420–1427

    PubMed  Google Scholar 

  • Pons Odena M, Piqueras Marimbaldo I, Segura Matute S, Balaguer Argallo M, Palomeque Rico A (2009) Non-invasive ventilation after cardiac surgery. A prospective study. An Pediatr (Barc) 71:13–19

    CAS  Google Scholar 

  • Rabitsch W, Staudionger T, Locker GJ, Köstler WJ, Laczika K, Frass M (2005) Respiratory failure after stem cell transplantation: improved outcome with non-invasive ventilation. Leuk Lymphoma 46:1151–1157

    PubMed  Google Scholar 

  • Rana S, Jenad H, Gay PC, Buck CF, Hubmayr RD, Gajic O (2006) Failure of non-invasive ventilation in patients with acute lung injury: observational cohort study. Crit Care 10:R79

    PubMed Central  PubMed  Google Scholar 

  • Schönhofer B, Sortor-Leger S (2002) Equipment needs for noninvasive mechanical ventilation. Eur Respir J 20:1029–1036

    PubMed  Google Scholar 

  • Serra A, Polese G, Braggion C, Rossi A (2002) Non-invasive proportional assist and pressure support ventilation in patients with cystic fibrosis and chronic respiratory failure. Thorax 57:50–54

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simonds AK (2003) Home ventilation. Eur Respir J 22(Suppl 47):538–546

    Google Scholar 

  • Simonds AK (2007) Non-invasive respiratory support – a practical handbook. Hodder Arnold, London

    Google Scholar 

  • Simonds AK, Ward S, Heather S, Bush A, Muntoni F (2000) Outcome of paediatric domiciliary mask ventilation in neuromuscular and skeletal disease. Eur Respir J J16:476–481

    Google Scholar 

  • Sivak ED, Shefner JM, Sexton J (1999) Neuromuscular disease and hypoventilation. Curr Opin Pulm Med 5:355–362

    CAS  PubMed  Google Scholar 

  • Soares M, Salluh JI, Azoulay E (2009) Noninvasive ventilation in patients with malignancies and hypoxemic acute respiratory failure: a still pending question. J Crit Care 25:37–38

    PubMed  Google Scholar 

  • Soma T, Hino M, Kida K, Kudoh S (2008) A Prospective and Randomized Study for Improvement of Acute Asthma by Non-invasive Positive Pressure Ventilation (NPPV). Intern Med 47:493–501

    PubMed  Google Scholar 

  • Soroksky A, Stav D, Shpirer I (2003) A pilot prospective, randomized, placebo-controlled trial of bilevel positive airway pressure in acute asthmatic attack. Chest 123:1018–1025

    PubMed  Google Scholar 

  • Stebbens VA, Dennis J, Samuels MP, Croft CB, Southfall DP (1991) Sleep related upper airway obstruction in a cohort with Down’s syndrome. Arch Dis Child 66:1333–1338

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stucki P, Perez MH, Scalfaro P, de Halleux Q, Vermeulen F, Cotting J (2009) Feasibility of non-invasive pressure support ventilation in infants with respiratory failure after extubation: a pilot study. Intensive Care Med 35:1623–1627

    PubMed  Google Scholar 

  • Tasker RC, Dundas I, Laverty A, Fletcher M, Lane R, Stocks J (1998) Distinct patterns of respiratory difficulty in young children with achondroplasia: a clinical, sleep, and lung function study. Arch Dis Child 79:99–108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Teague WG (2003) Noninvasive ventilation in the pediatric intensive care unit for children with acute respiratory failure. Pediatr Pulmonol 35:418–426

    PubMed  Google Scholar 

  • Teague WG (2005) Non-invasive positive pressure ventilation: current status in paediatric patients. Paediatr Respir Rev 6:52–60

    PubMed  Google Scholar 

  • Thia LP, McKenzie SA, Blyth TP, Minasian CC, Kozlowska WJ, Carr SB (2008) Randomised controlled trial of nasal continuous positive airways pressure (CPAP) in bronchiolitis. Arch Dis Child 93:45–47

    PubMed  Google Scholar 

  • Voter KZ, Chalanick K (1996) Home oxygen and ventilation therapies in pediatric patients. Curr Opin Pediatr 8:221–225

    CAS  PubMed  Google Scholar 

  • Wormald R, Naude A, Rowley H (2009) Non-invasive ventilation in children with upper airway obstruction. Int J Pediatr Otorhinolaryngol 73:551–554

    CAS  PubMed  Google Scholar 

  • Yañez LJ, Yunge M, Emilfork M, Lapadula M, Alcántara A, Fernández C, Lozano J, Contreras M, Conto L, Arevalo C, Gayan A, Hernández F, Pedraza M, Feddersen M, Bejares M, Morales M, Mallea F, Glasinovic M, Cavada G (2008) A prospective, randomized, controlled trial of noninvasive ventilation in pediatric acute respiratory failure. Pediatr Crit Care Med 9:484–489

    PubMed  Google Scholar 

  • Younes M, Kun J, Masiowski B, Webster K, Roberts D (2001) A method for noninvasive determining of inspiratory resistance during proportional assist ventilation. Am J Respir Crit Care Med 163:829–839

    CAS  PubMed  Google Scholar 

  • Young HK, Lowe A, Fitzgerald DA, Seton C, Waters KA, Kenny E (2007) Outcome of noninvasive ventilation in children with neuromuscular disease. Neurology 68:198–201

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Kugelman MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kugelman, A., Martinon-Torres, F. (2015). Indications for Noninvasive Respiratory Support. In: Rimensberger, P. (eds) Pediatric and Neonatal Mechanical Ventilation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01219-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01219-8_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01218-1

  • Online ISBN: 978-3-642-01219-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics