Skip to main content
  • 1865 Accesses

Abstract

Two types of near-field acoustic microscopies, scanning electron acoustic microscopy (SEAM) and scanning probe acoustic microscopy (SPAM), are presented in terms of their operation principle, imaging contrast mechanism and their applications to characterize microstructures of functional ceramics as well as other materials including structure ceramics, metal, single crystals, composites and coatings, etc. Due to their unique features, SEAM and SPAM provide a powerful tool to visualize the buried structures in a variety of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auciello O, Gruverman A, Tokumoto H, et al (1998) Nanoscale scanning force imaging of polarization phenomena in ferroelectric thin films. Mater Res Bull 23(1):33–42

    Google Scholar 

  • Averkiev N S, et al (1984) The free charge carrier effects on elastic properties of silicon. Sol. Sta. Comm. 52(1):17–21

    Article  Google Scholar 

  • Balk L J (1980) Advanced in Electronics and Electron Physics 71:1–73

    Google Scholar 

  • Balk L J, et al (1983) Techniques for scanning electron acoustic microscopy. Inst Phys Conf Ser 1, 67:387–392

    Google Scholar 

  • Balk L J, Davies D G (1984) Investigation of Si−Fe transformer sheets by scanning electron acoustic microscopy (SEAM). IEEE Trans Magn 20(5):1466–1468

    Article  Google Scholar 

  • Balk L J, Kultscher N (1983) Microscopy of Semiconducting Materials. Adam Hilger, London

    Google Scholar 

  • Balk L J, Kultscher N (1984) Nonlinear scanning electron acoustic microscopy. Journal de Physique 45(C2):869–872

    Google Scholar 

  • Bihan R L (1989) Study of ferroelectric and ferroelastic domain structures by scanning electron microscopy. Ferroelectrics 97:19–46

    Google Scholar 

  • Binnig G, Rohrer H, Gerber Ch (1982) Tunneling through a controllable vacuum gap. Appl Phys Lett 40:178–180

    Article  Google Scholar 

  • Brandis E, Rosencwaig A (1980) Thermal-wave microscopy with electron beams. Appl Phys Lett 37:98–100

    Article  Google Scholar 

  • Bresse J F, Papadopoulo A C (1987) Be incorporation in heavily doped molecular beam epitaxy grown GaAs: Evidence of nonradiative behavior by cathodoluminescence and electron acoustic measurements. Appl Phys Lett 51:183–185

    Article  Google Scholar 

  • Bursill L A, Lin P J (1984) Microdomains observed at the ferroelectric/paraelectric phase transition of barium titanate. Nature 311:550–552

    Article  Google Scholar 

  • Cargill G S (1980) Ultrasonic imaging in scanning electron microscopy. Nature 286:691–693

    Article  Google Scholar 

  • Carslaw H S, Jaeger J C (1973) Conduction of Heat in Solids (the 2nd Ed). Oxford University Press, London

    Google Scholar 

  • Davies D J (1983) Scanning Electron Microscopy Part III: 1163

    Google Scholar 

  • Davies G, Howie A, Staveley S L (1982) Scanning electron acoustic microcopy. In: Proceeding of SPIE-The International Society for Optical Engineering 368:58

    Google Scholar 

  • Furuhata Y, Toriyama K (1973) New liquid-crystal method for revealing ferroelectric domains. Appl Phys Lett 23:361–363

    Article  Google Scholar 

  • Gunther P, Fischer U Ch, Dransfeld K (1989) Scanning near-field acoustic microscopy. Appl Phys B 48(1):89–92

    Article  Google Scholar 

  • Hatano J, et al (1973) Improved powder-Pattern technique for delineating ferroelectric domains. Jpn J Appl Phys 12(10):1644–1645

    Article  Google Scholar 

  • Holstein W L (1985) Image formation in electron thermoelastic acoustic microscopy. J Appl Phys 58(5):2008–2021

    Article  Google Scholar 

  • Hooton J A, Merz W J (1955) Etch patterns and ferroelectric domains in BaTiO3 single crystals. Phys Rev 98(2):409–413

    Article  Google Scholar 

  • Ikegami S, Ueda I (1967) Mechanism of Aging in Polycrystalline BaTiO3. J Phys Soc Jpn 22:725–734

    Article  Google Scholar 

  • Jiang F M, Kojima S, Zhang B Y, et al (1999) Application of SEAM and SAM To Ferroelectric And Ferroelastic Crystals. Ferroelectrics 217: 335–341.

    Article  Google Scholar 

  • Jiang F M, Kojima S, Zhang B Y, et al (1999) Application of SEAM and SAM To Ferroelectric and Ferroelastic Crystals. Ferroelectrics 222:237–242.

    Article  Google Scholar 

  • Kirkendall T D, Remmel T P (1984) Journal de Physique 45(C2):877

    Google Scholar 

  • Kohler B, Schubert F (2002) Some aspects of photo and particle acoustic methods. Molecular and Quantunm Acoustics 23:225–238

    Google Scholar 

  • Kulcsar F (1956) A microstructure study of barium titanate ceramics. J Am Ceram Soc 3991:13–17

    Article  Google Scholar 

  • Kultscher N, Balk L J (1983) J Scanning Electron Microscopy Part I:33

    Google Scholar 

  • Lemons R A, Quate C F (1974) Acoustic microscope-scanning version. Appl Phys Lett 24:163–165

    Article  Google Scholar 

  • Liao J (1999) Ferroelectric domains and their dynamic behavior. Ph. D thesies, Shanghai Institute of Ceramics, Chinese Academy of Sciences

    Google Scholar 

  • Liao J, Yang Y, Jiang X P, et al (1999) Scanning Electron Acoustic Imaging of Residual Stress Distributions in Ceramic Coatings and Sintered Ceramics. Mater Lett 39: 335–337

    Article  Google Scholar 

  • Liu X X, Heiderhoff R, Abicht H P, et al (2002) Scanning near-field acoustic study of ferroelectric BaTiO3 ceramics. J Phys D: Appl Phys 35:74–87

    Article  Google Scholar 

  • Liu X X, Balk L J, Zhang B Y, et al (1998) Scanning electron acoustic microscopy for the evaluation of domain structures in BaTiO3 single crystal and ceramics. J Mater Sci 33:4543–4549

    Article  Google Scholar 

  • Little W A (1955) Dynamic behavior of domain walls in barium titanate. Phys Rev 98(4):978–984

    Article  Google Scholar 

  • Merz W J (1954) Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals. Phys Rev 95(3):690–698

    Article  Google Scholar 

  • Mulvihill M L, Cross L E, Cao W W, et al (1997) Domain-related phase transitionlike behavior in lead zinc niobate relaxor ferroelectric single crystals. J Am Ceram Soc 80(6):1462–1468

    Google Scholar 

  • Murata K, et al (1971) Monte carlo calculations on electron scattering in a solid target. Jpn J Appl Phys 10(6):678–686

    Article  Google Scholar 

  • Opsal J, Rosencwaig A (1982) Thermal-wave depth profiling: theory. J Appl Phys53(6):4240–4246

    Article  Google Scholar 

  • Piqueras J (1994) Scanning electron acoustic microscopy of electronic materials. Materials Science and Engineering B 24(1–3):209–212

    Article  Google Scholar 

  • Qian M L (1995) Study of Characteristics of ultrasound pulse thermoelastically generated b a laser pulse. Acta Acousta 20(1): 1–10

    Google Scholar 

  • Qian M L, Cantrell J H (1989) Signal generation in scanning electron acoustic microscopy. Mater Sci and Eng A 122(1):57–64

    Article  Google Scholar 

  • Rosencwaig A, Gersho A (1976) Theory of the photoacoustic effect with solids. J Appl Phys 47(1):64–69

    Article  Google Scholar 

  • Rosencwaig A, Opsal J (1985) Thermal Wave Imaging with Thermoacoustic Detection. IEEE UFFC 33 (5) 516–528

    Google Scholar 

  • Shekhawat G S, Dravid V P (2005) Nanoscale imaging of buried structures via scanning near-field ultrasound holography. Science 310(5745):89–92

    Article  Google Scholar 

  • Takenoshita H (2000) Nondestructive internal observation of metal-oxide-semiconductor LSI designed by 0.8 μm rule. Jpn J Appl Phys A39 (9):5312–5315

    Article  Google Scholar 

  • Takenoshita H (2002) Comparative study of scanning electron microscopy and electronacoustic microscopy images. Jpn J Appl Phys 41(1):70–72

    Article  Google Scholar 

  • Tennery V J, Anderson F R (1958) Examination of the surface and domain structure in ceramic barium titanate. J Appl Phys 29:755–758

    Article  Google Scholar 

  • Urchulutegui M, Piqueras J, Liopis J (1989) Scanning electron-acoustic microscopy of MgO crystals. J Appl Phys 65(7):2677–2680

    Article  Google Scholar 

  • Urchulutegui M, et al (1993) Scanning electron acoustic microscopy of misfit dislocations in InGaAs/GaAs superlattices. J Phys D: Appl Phys 26:1537–1539

    Article  Google Scholar 

  • Yin Q R (1985) Thermal wave microscope and its applications. Nature (in Chinese) 8:344–348

    Google Scholar 

  • Yin Q R, Jiang F M, Hui S X (1994) Piezoelectric electron-acoustic probe (PEAP) and some applications. Ferroelectrics 151:97–102

    Google Scholar 

  • Yin Q R, Li G R, Zeng H R, et al (2004) Ferroelectric domain structures in (Pb, La) (Zr, Ti) O3 ceramics observed by scanning force microscopy in acoustic mode. Appl Phys A 78:699–702

    Article  Google Scholar 

  • Yin Q R, Liao J, Jiang F M, et al (1999) Electron acoustic imaging of ferroelectric domain and mechanism analysis on BaTiO3 ceramics. Ferroelectrics231:1–18

    Article  Google Scholar 

  • Yin Q R, Tang Z, Zhang H J, et al (1990) Scanning electron acoustic microscope. Journal of Electron Microscopy (in Chinese) 9:53–55

    Google Scholar 

  • Yin Q R, Wang T, Qiang M L (1991) Techniques of optic-acoustic and optic-thermal and their applications. Science press, Beijing

    Google Scholar 

  • Yin Q R, Zeng H R, Li G R, et al (2003) Near-field acoustic microscopy of ferroelectrics and related materials. Mater Sci & Eng B 99:2–5

    Article  Google Scholar 

  • Zeng H R, Yu H F, Li G R, et al (2005) Local elasticity imaging of ferroelectric domains in PMN-PT single crystals by low-frequency atomic force acoustic microscopy. Sol. Sta. Comm. 133(8):521–525

    Article  Google Scholar 

  • Zeng H R, Yu H F, Zhang L N, et al (2005) Local elastic response of individual grains in lead-free Nb-doped Bi4Ti3O12 piezoelectric ceramics. Phys Stat Sol (a): Rapid Research Letters 202(4):R41–R43

    Article  Google Scholar 

  • Zhang B Y, Jiang F M, Hui S X, et al (1996) Signal generation of ferroelectric semiconductor ceramics in scanning electron-acoustic microscopy. Journal of Function Materials and Devices (in Chinese) 2:53–57

    Google Scholar 

  • Zhang B Y, Jiang F M, Shi Y, et al (1997) Scanning electron-acoustic imaging of residual stress distributions in aluminum metal and ZrSiO4 multiphase ceramics. Appl Phys Lett70:589–591

    Article  Google Scholar 

  • Zhang B Y, Jiang F M, Yang Y, et al (1996) Electron acoustic imaging of BaTiO3 single crystals. J Appl Phys 80(3):1916–1918

    Article  Google Scholar 

  • Zhang B Y, Jiang F M, Yang Y, et al (1996) Piezoelectric electron acoustic probe of domain structures in ferroelectric ceramics BaTiO3. Ferroelectric Letters 22:21–25

    Article  Google Scholar 

  • Zhang B Y, Jiang F M, Yin Q R (1995) Observation of growth defects with SEAM to GaAs/GaAs. In:Proc of Inter Sixth Beijing Conf and Exhi on Instru Analysis, A: Electron Microscopy, Beijing

    Google Scholar 

  • Zhang B Y, Jiang F M, Yin Q R (1996) Theory and applications of scanning electron acoustic microscope. J Inorg Mater (in Chinese) 11(2):207–213

    Google Scholar 

  • Zhang B Y, Yin Q R (1996) Piezoelectric electron acoustic study of domain structures in ferroelectric ceramics BaTiO3. Ferroelectrics Lett 22:21–25

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Metallurgical Industry Press, Beijing and Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Near-field Acoustic Microscopy of Functional Ceramics. In: Microstructure, Property and Processing of Functional Ceramics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01694-3_3

Download citation

Publish with us

Policies and ethics