Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 218))

  • 1199 Accesses

Abstract

This Chapter describes two approaches to ensuring the production quality of batch biotechnological processes. The first makes use of the multivariate statistical data analysis and multivariate statistical process control (MSPC) or better termed multivariate statistical process performance monitoring (MSPM). An industrial application is described to the interrogation of data from a reaction vessel producing an active pharmaceutical ingredient (API) which enabled the realization of a better understanding of the factors causing the onset of an impurity formation to be obtained as well demonstrating the power of multivariate statistical data analysis techniques to provide an enhanced understanding of the process. In the second application, a simulation study of batch-to-batch iterative learning control strategy is presented where the batch control actions for the next batch are adjusted using the information obtained from current and previous batches. The control policy updating is calculated using a model linearized around a reference batch. In order to cope with process variations and disturbances, the reference batch can be taken as the immediate previous batch. After each batch, the newly obtained process operation data is added to the historical data base and an updated linearized model is re-identified. Since the control actions during different stages of a batch are usually correlated, it is proposed here that the linearized model can be identified from partial least square regression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clementschitsch, F., Bayer, K.: Microbial Cell Factories (published online, May 22), doi:10.1186/1475-2859-5-19

    Google Scholar 

  2. Nomikos, P., MacGregor, J.F.: Monitoring batch processes using multi-way principal components. AIChE Journal 40(8), 1361–1375 (1994)

    Article  Google Scholar 

  3. Nomikos, P., MacGregor, J.F.: Multivariate SPC Charts for monitoring batch processes. Technometrics 37(1), 41–59 (1995)

    Article  MATH  Google Scholar 

  4. Nomikos, P., MacGregor, J.F.: Multi-way partial least squares in monitoring batch processes. Chemometrics and Intelligence Laboratory Systems 30, 97–108 (1995)

    Article  Google Scholar 

  5. Wold, S., Geladi, P., Esbensen, K., Ohman, J.: Multi-way principal components and PLS analysis. Journal of Chemometrics 1, 41–56 (1987)

    Article  Google Scholar 

  6. Wold, S., Kettaneh, N., Friden, H., Holmberg, A.: Modelling and Diagnostics of Batch Processes and Analogous Kinetic Experiments. Chemometrics and Intelligent Laboratory Systems 44, 331–340 (1998)

    Article  Google Scholar 

  7. Gregersen, L., Jorgensen, S.B.: Supervision of fed-batch fermentations. Chemical Engineering Journal 75(1), 69–76 (1999)

    Article  Google Scholar 

  8. Lennox, B., Hiden, H.G., Montague, G.A., Kornfield, G., Goulding, P.R.: Application of Multivariate Statistical Process Control to Batch Operations. Computers and Chemical Engineering 24(2-7), 291–296 (2000)

    Article  Google Scholar 

  9. Martin, E.B., Morris, A.J.: Impurity Detection in Batch Pharmaceutical Production. In: 8th International Conference on Computer Applications in Biotechnology, Modelling and Control of Biotechnology Processes, Quebec City, Canada, June 2001, pp. 37–46 (2001)

    Google Scholar 

  10. Martin, E.B., Morris, A.J.: Enhanced bio-manufacturing through advanced multivariate statistical technologies. Journal of Biotechnology 99, 223–235 (2002)

    Article  Google Scholar 

  11. Fletcher, N.M., Martin, E.B., Morris, A.J., Quinn, H., Hinge, B.: The Monitoring of an Industrial Fed-batch Fermentation Process. In: CAB-8, Quebec, Canada, pp. 149–154 (2001)

    Google Scholar 

  12. Fletcher, N.M., Martin, E.B., Morris, A.J.: Comparison of Dynamic Approaches to Batch Modelling. In: Proc. 12th European Symposium of Computer Aided Process Engineering, pp. 487–492 (2002)

    Google Scholar 

  13. McPherson, L.A., Martin, E.B., Morris, A.J.: Super model-based techniques for batch performance monitoring, ESCAPE-12. In: European Symposium on Computer Aided Process Engineering, vol. 12, pp. 523–528 (2002)

    Google Scholar 

  14. Martin, E.B., Bettoni, A., Morris, A.J.: Manufacturing Performance Monitoring of a Mixed Batch Continuous Process through Resampling. Journal of Quality Technology 34(2), 171–186 (2002)

    Google Scholar 

  15. Martin, E.B., Morris, A.J., Lane, S.: Monitoring Process Manufacturing Performance. IEEE Control Systems Magazine 22(5), 26–39 (2002)

    Article  Google Scholar 

  16. Mercer, E.C.W., Martin, E.B., Morris, A.J.: State-space residual based monitoring. In: ESCAPE-12. European Symposium on Computer Aided Process Engineering, vol. 12, pp. 727–732 (2002)

    Google Scholar 

  17. Simoglou, A., Martin, E.B., Morris, A.J.: Statistical Performance Monitoring of Dynamic Multivariate Processes using State Space Modelling. Computers Chem. Engng. 26, 909–920 (2002)

    Article  Google Scholar 

  18. Alabi, I., Morris, S., Martin, A.J., Martin, E.B.: On-line Dynamic Process Monitoring using Wavelet-based Generic Dissimilarity Measures. Trans. IChemE Part A Chemical Engineering Research and Design 83(A6), 698–705 (2005)

    Article  Google Scholar 

  19. Lane, S., Martin, E.B., Kooijmans, R., Morris, A.J.: Performance monitoring of a multi-product semi-batch process. Journal of Process Control 11, 1–11 (2001)

    Article  Google Scholar 

  20. Louwerse, D.J., Smilde, A.K.: Multivariate statistical process control of batch processes based on three-way models. Chemical Engineering Science 55, 1225–1235 (1999)

    Article  Google Scholar 

  21. Wise, B.M., Gallagher, N.B., Martin, E.B.: Application of PARAFAC2 to fault detection and diagnosis in semiconductor etch. Journal of Chemometrics 15, 285–298 (2001)

    Article  Google Scholar 

  22. Meng, X., Morris, A.J., Martin, E.B.: On-line monitoring of batch processes using a PARAFAC representation. Journal of Chemometrics 17, 65–81 (2003)

    Article  Google Scholar 

  23. Westerhuis, J.A., Kourti, T., MacGregor, J.F.: Comparing alternative approaches for multivariate statistical analysis of batch process data. Journal of Chemometrics 13, 397–413 (1999)

    Article  Google Scholar 

  24. Van Sprang, E.N.M., Ramaker, H.-J., Westerhuis, J.A., Gurden, S.P., Smilde, A.K.: Critical evaluation of approaches for on-line batch process monitoring. Chemical Engineering Science 57, 3979–3991 (2002)

    Article  Google Scholar 

  25. Lee, J.H., Dorsey, A.W.: Monitoring of batch processes through state-space models. AIChE Journal 50, 1198–1210 (2004)

    Article  Google Scholar 

  26. Flores-Cerrillo, J., MacGregor, J.F.: Multivariate monitoring of batch processes using batch-to-batch information. AIChE Journal 50, 1219–1228 (2004)

    Article  Google Scholar 

  27. García-Munoz, S., Kourti, T., MacGregor, J.F.: Model predictive monitoring for batch processes. Industrial and Engineering Chemistry Research 43(18), 5929–5941 (2004)

    Article  Google Scholar 

  28. Kourti, T.: Multivariate dynamic data modeling for analysis and statistical process control of batch processes, start-ups and grade transitions. Journal of Chemometrics 17, 93–109 (2003)

    Article  Google Scholar 

  29. Fletcher, N.M., Morris, A.J., Montague, G., Martin, E.B.: Local Dynamic Partial Least Squares Approaches for the Modelling of Batch Processes. Can. J. Chem. Eng. 86, 960–970 (2008)

    Article  Google Scholar 

  30. Jolliffe, I.T.: Principal Component Analysis. Springer, New York (1986)

    Google Scholar 

  31. Wold, S.: Cross-validatory estimation of the number of components in factor and principal components model. Technometrics 20(4), 397–405 (1978)

    Article  MATH  Google Scholar 

  32. Geladi, P., Wold, S.: Local principal component models, rank maps and contextuality for curve resolution and multi-way calibration inference. Chemom. Intell. Lab. Syst. 2, 273–281 (1987)

    Article  Google Scholar 

  33. Miller, P., Swanson, S.E., Heckler, C.F.: A Missing Link in Multivariate Quality Control. Int. J. Appl. Math. Comput. Sci. 8, 775–792 (1998)

    MATH  MathSciNet  Google Scholar 

  34. Gollmer, K., Posten, C.: Supervision of bioprocesses using a ynamdic time warping algorithm. Control Engineering Practice 40, 1287–1295 (1996)

    Article  Google Scholar 

  35. Kassidas, A., MacGregor, J.F., Taylor, P.A.: Synchronization of Batch Trajectories Using Dynamic Time Warping. AIChE Journal 44(8), 1361–1375 (1998)

    Google Scholar 

  36. Rothwell, S.G., Martin, E.B., Morris, A.J.: Comparison of Methods for Dealing with Uneven Length Batches with Application to MPCA Monitoring of a Batch Process. In: Proceedings 7th Int. Conf. On Computer Applications in Biotechnology (CAB7), Osaka, Japan (1998)

    Google Scholar 

  37. Geladi, P., Kowalski, B.R.: Partial Least Squares Regression: A Tutorial. Analytica Chimica Acta 185, 1–17 (1986)

    Article  Google Scholar 

  38. Wold, S., Kettaneh-Wold, N., Skagerberg, B.: Nonlinear PLS modeling. Chemometrics and Intelligent Laboratory Systems 7(1-2), 53–65 (1989)

    Article  Google Scholar 

  39. Baffi, G., Martin, E.B., Morris, A.J.: Non-linear Projection to Latent Structures Revisited: the Quadratic Approach. Computers and Chemical Engineering 23, 395–411 (1999)

    Article  Google Scholar 

  40. Hong, J.: Optimal substrate feeding policy for fed batch fermentation with substrate and product inhibition kinetics. Biotechnol. Bioeng. 27, 1421–1431 (1986)

    Article  Google Scholar 

  41. Chen, C.T., Hwang, C.: Optimal control computation for differential-algebraic process systems with general constraints. Chem. Engng Commun. 97, 9–26 (1990)

    Article  Google Scholar 

  42. Luus, R.: Application of dynamic programming to differential - algebraic process systems. Computers Chem. Engng. 17, 373–377 (1993)

    Article  Google Scholar 

  43. Tian, Y., Zhang, J., Morris, A.J.: Modeling and optimal control of a batch polymerization reactor using a hybrid stacked recurrent neural network model. Ind. Eng. Chem. Res. 40, 4525–4535 (2001)

    Article  Google Scholar 

  44. Zhang, J.: A reliable neural network model based optimal control strategy for a batch polymerisation reactor. Ind. Eng. Chem. Res. 43, 1030–1038 (2004)

    Article  Google Scholar 

  45. Gao, F., Yang, Y., Shao, C.: Robust iterative learning control with applications to injection molding process. Chemical Engineering Science 56, 7025–7034 (2001)

    Article  Google Scholar 

  46. Lee, S., Chin, I.S., Lee, H.J., Lee, J.H.: Model predictive control technique combined with iterative learning control for batch processes. AIChE J. 45, 2175–2187 (1999)

    Article  Google Scholar 

  47. Xiong, Z., Zhang, J.: Batch-to-batch iterative optimisation control based on recurrent neural network models. Journal of Process Control 15(1), 11–21 (2005)

    Article  MathSciNet  Google Scholar 

  48. Xiong, Z., Zhang, J.: Product quality trajectory tracking in batch processes using iterative learning control based on time-varying perturbation models. Ind. Eng. Chem. Res. 42(26), 6802–6814 (2003)

    Article  Google Scholar 

  49. Martin, E.B., Morris, A.J., Zhang, J.: Process performance monitoring using multivariate statistical process control. IEE Proc. -Control Theory Appl. 143(2), 132–144 (1996)

    Article  MATH  Google Scholar 

  50. Jia, F., Martin, E.B., Morris, A.J.: Non-linear principal components analysis with application to process fault detection. International Journal of Systems Science 31(1), 1473–1487 (2000)

    Article  MATH  Google Scholar 

  51. Glassey, J., Ignova, M., Ward, A.C., Montague, G.A., Morris, A.J.: Bioprocess supervision: neural networks and knowledge based systems. Journal of Biotechnology 52, 201–205 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morris, J., Zhang, J. (2009). Performance Monitoring and Batch to Batch Control of Biotechnological Processes. In: do Carmo Nicoletti, M., Jain, L.C. (eds) Computational Intelligence Techniques for Bioprocess Modelling, Supervision and Control. Studies in Computational Intelligence, vol 218. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01888-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01888-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01887-9

  • Online ISBN: 978-3-642-01888-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics