Skip to main content

Biochemical Tuple Spaces for Self-organising Coordination

  • Conference paper
Coordination Models and Languages (COORDINATION 2009)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5521))

Included in the following conference series:

Abstract

Inspired by recent works in computational systems biology and existing literature proposing nature-inspired approaches for the coordination of today complex distributed systems, this paper proposes a mechanism to leverage exact computational modelling of chemical reactions for achieving self-organisation in system coordination.

We conceive the notion of biochemical tuple spaces. In this model: a tuple resembles a chemical substance, a notion of activity/pertinency value for tuples is used to model chemical concentration, coordination rules are structured as chemical reactions evolving tuple concentration over time, a tuple space resembles a single-compartment solution, and finally a network of tuple spaces resembles a tissue-like biological system.

The proposed model is formalised as a process algebra with stochastic semantics, and several examples are described up to an ecology-inspired scenario of system coordination, which emphasises the self-organisation features of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babaoglu, O., Canright, G., Deutsch, A., Caro, G.A.D., Ducatelle, F., Gambardella, L.M., Ganguly, N., Jelasity, M., Montemanni, R., Montresor, A., Urnes, T.: Design patterns from biology for distributed computing. ACM Trans. Auton. Adapt. Syst. 1(1), 26–66 (2006)

    Article  Google Scholar 

  2. Bandara, A., Payne, T.R., Roure, D.D., Gibbins, N., Lewis, T.: A pragmatic approach for the semantic description and matching of pervasive resources. In: Wu, S., Yang, L.T., Xu, T.L. (eds.) GPC 2008. LNCS, vol. 5036, pp. 434–446. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Berry, G., Boudol, G.: The chemical abstract machine. Theoretical Computer Science 96(1), 217–248 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berryman, A.A.: The origins and evolution of predator-prey theory. Ecology 73(5), 1530–1535 (1992)

    Article  Google Scholar 

  5. Bonâtre, J.-P., Le Métayer, D.: Gamma and the chemical reaction model: Ten years after. In: Coordination Programming, pp. 3–41. Imperial College Press, London (1996)

    Google Scholar 

  6. Bravetti, M.: Stochastic and real time in process algebra: A conceptual overview. Electr. Notes Theor. Comput. Sci. 162, 113–119 (2006)

    Article  MATH  Google Scholar 

  7. Bravetti, M., Gorrieri, R., Lucchi, R., Zavattaro, G.: Quantitative information in the tuple space coordination model. Theor. Comput. Sci. 346(1), 28–57 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cardelli, L.: Artificial biochemistry. Technical Report TR-08-2006, University of Trento Centre for Computational and Systems Biology (2006)

    Google Scholar 

  9. Cardelli, L., Gordon, A.D.: Mobile ambients. Theoretical Computer Science 240(1), 177–213 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cardelli, L., Zavattaro, G.: On the computational power of biochemistry. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds.) AB 2008. LNCS, vol. 5147, pp. 65–80. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Casadei, M., Menezes, R., Viroli, M., Tolksdorf, R.: Using ant’s brood sorting to increase fault tolerance in Linda’s tuple distribution mechanism. In: Klusch, M., Hindriks, K.V., Papazoglou, M.P., Sterling, L. (eds.) CIA 2007. LNCS, vol. 4676, pp. 255–269. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Casadei, M., Viroli, M., Gardelli, L.: On the collective sort problem for distributed tuple spaces. Science of Computer Programming (2009) (in press), doi:10.1016/j.scico.2008.09.018

    Google Scholar 

  13. Credi, A., Garavelli, M., Laneve, C., Pradalier, S., Silvi, S., Zavattaro, G.: nanok: A calculus for the modeling and simulation of nano devices. Theor. Comput. Sci. 408(1), 17–30 (2008)

    Article  MATH  Google Scholar 

  14. Cunningham, H.C., Roman, G.-C.: A unity-style programming logic for shared dataspace programs. IEEE Trans. Parallel Distrib. Syst. 1(3), 365–376 (1990)

    Article  Google Scholar 

  15. Fisher, J., Henzinger, T.A.: Executable cell biology. Nature Biotechnology 25, 1239–1249 (2007)

    Article  Google Scholar 

  16. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  17. Giunchiglia, F., Yatskevich, M., Shvaiko, P.: Semantic matching: Algorithms and implementation. J. Data Semantics 4601, 1–38 (2007)

    MATH  Google Scholar 

  18. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid. In: VLDB, pp. 49–58. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  19. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applications with the TOTA middleware. In: Pervasive Computing and Communications, March 2004, pp. 263–273. IEEE, Los Alamitos (2004)

    Google Scholar 

  20. Menezes, R., Tolksdorf, R.: Adaptiveness in linda-based coordination models. In: Di Marzo Serugendo, G., Karageorgos, A., Rana, O.F., Zambonelli, F. (eds.) ESOA 2003. LNCS (LNAI), vol. 2977, pp. 212–232. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Omicini, A., Zambonelli, F.: Coordination for Internet application development. Autonomous Agents and Multi-Agent Systems 2(3), 251–269 (1999)

    Article  Google Scholar 

  22. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P.: Semantic matching of web services capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 333–347. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  23. Paun, G.: Membrane Computing: An Introduction. Springer, New York (2002)

    Book  MATH  Google Scholar 

  24. Pierro, A.D., Hankin, C., Wiklicky, H.: Continuous-time probabilistic klaim. Electr. Notes Theor. Comput. Sci. 128(5), 27–38 (2005)

    Article  MATH  Google Scholar 

  25. Priami, C.: Stochastic pi-calculus. The Computer Journal 38(7), 578–589 (1995)

    Article  Google Scholar 

  26. Ricci, A., Omicini, A., Viroli, M.: Extending ReSpecT for multiple coordination flows. In: Arabnia, H.R. (ed.) International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2002), Las Vegas, NV, USA, July 2002, vol. III, pp. 1407–1413. CSREA Press (2002)

    Google Scholar 

  27. Tolksdorf, R., Nixon, L.J.B., Simperl, E.P.B.: Towards a tuplespace-based middleware for the Semantic Web. Web Intelligence and Agent Systems 6(3), 235–251 (2008)

    Google Scholar 

  28. Viroli, M., Casadei, M., Omicini, A.: A framework for modelling and implementing self-organising coordination. In: 24th Annual ACM Symposium on Applied Computing (SAC 2009), March 8-12, vol. III, pp. 1353–1360. ACM, New York (2009)

    Chapter  Google Scholar 

  29. Viroli, M., Omicini, A.: Coordination as a service. Fundamenta Informaticae 73(4), 507–534 (2006)

    MathSciNet  MATH  Google Scholar 

  30. Zambonelli, F., Viroli, M.: Architecture and metaphors for eternally adaptive service ecosystems. In: IDC 2008, September 2008. Studies in Computational Intelligence, vol. 162, pp. 23–32. Springer, Heidelberg (2008)

    Google Scholar 

  31. Zavattaro, G.: Reachability analysis in bioambients. Electr. Notes Theor. Comput. Sci. 227, 179–193 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 IFIP International Federation for Information Processing

About this paper

Cite this paper

Viroli, M., Casadei, M. (2009). Biochemical Tuple Spaces for Self-organising Coordination. In: Field, J., Vasconcelos, V.T. (eds) Coordination Models and Languages. COORDINATION 2009. Lecture Notes in Computer Science, vol 5521. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02053-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02053-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02052-0

  • Online ISBN: 978-3-642-02053-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics