Skip to main content

Nonlinear Optical Waves in Liquid Crystalline Lattices

  • Chapter
  • First Online:
Nonlinearities in Periodic Structures and Metamaterials

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 150))

  • 1431 Accesses

Abstract

Liquid crystals (LC) are molecular dielectrics encompassing several properties of both liquids and solids; in particular, they are often characterized by an order parameter which can be employed to distinguish among possible LC phases. In the nematic phase, liquid crystals show a significant degree of orientational order, their elongated organic molecules being aligned in a mean direction in space, as described by a vectorial field n called director. Sincemost nematics are derivative of benzene, they feature “cigar-like” molecules; hence, the macroscopic system can be regarded as an optically uniaxial crystalline fluid. The dielectric tensor \( \overleftrightarrow{\varepsilon \left( r \right)} \), describing the optical polarization of the medium, can be expressed as \( \overleftrightarrow{\varepsilon} = \overleftrightarrow{R}^\dag \cdot \overleftrightarrow{\varepsilon} _{{\rm NLC}} \cdot \overleftrightarrow{R} \), with \( \overleftrightarrow{\varepsilon}_{{\rm NLC}} = \left[ \varepsilon_\bot , \varepsilon_\bot , \varepsilon_\| \right] I, I_{ij} = \delta_{ij }\) (\(\delta_{ij }\) is the Kronecker delta) and \( \overleftrightarrow{R}(n) \) a rotation tensor. The steady-state director configuration is obtained as an extremal point of the action integral \( \mathcal{I} = \smallint \mathcal{L} d\rm{x}d\rm{y}d\rm{z} \), whose density \( \mathcal{L} \) defines the energy spent by the molecular system to hold a specific director configuration (Frank freeenergy formulation) [1]. The energy density \( \mathcal{L} \) can be further expanded into elastic \( \mathcal{L}_{\rm{el}} \) and electromagnetic \( \mathcal{L}_{\rm{em}} \) terms: \( \mathcal{L} = \mathcal{L}_{\rm{el}} + \mathcal{L}_{\rm{em}} \). The contribution \( \mathcal{L}_{\rm{el}} \) can be evaluated in the framework of the elastic continuum theory and, in the single constant approximation [2], reads:

$$\mathcal{L}_{rm{el}} = \frac{1}{2}K\left[ {\left( {\nabla \cdot n} \right)^2 + \left( {n \cdot \nabla \times n} \right)^2 } \right],$$

with K accounting for elastic deformations ([K] = N). The electromagnetic contribution can be calculated by considering that the electric field induces dipoles on the nematic liquid crystal (NLC) molecules; the latter are then subjected to a torque and change their angular orientation towards a minimum energy configuration (e.g., parallel to the applied field). The contribution describing such reorientation process is [2]:

$$\mathcal{L}_{rm{em}} = -\frac{{\Delta \varepsilon }}{2}\left\langle {n \cdot E} \right\rangle ,$$

being \( \Delta \varepsilon = \varepsilon_{\|} - \varepsilon_{\bot} \) the NLC birefringence and \( \left\langle \ldots \right\rangle \) denoting a square time average. The balance between field-induced reorientation and elastic interactions gives rise to the steady state distribution n, found as an extremal of the action integral \( \delta \mathcal{L} = 0 \).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.G. de Gennes and J. Prost, The Physics of Liquid Crystals, Oxford Science Publications, Oxford (1995)

    Google Scholar 

  2. I.C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena, Wiley, New York (1995)

    Google Scholar 

  3. A. Fratalocchi, G. Assanto, K.A. Brzdakiewicz, and M.A. Karpierz, Opt. Lett. 29, 1530 (2004)

    Article  ADS  Google Scholar 

  4. A. Fratalocchi and G. Assanto, Phys. Rev. A 76, 042108 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  5. F. Lederer, G.I. Stegeman, D.N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, Phys. Rep. 463, 1 (2008)

    Article  ADS  Google Scholar 

  6. A. Fratalocchi, G. Assanto, K.A. Brzdakiewicz, and M.A. Karpierz, Opt. Express 13, 1808 (2005)

    Article  ADS  Google Scholar 

  7. A. Fratalocchi, G. Assanto, K.A. Brzdakiewicz, and M.A. Karpierz, Opt. Lett. 30, 174 (2005)

    Article  ADS  Google Scholar 

  8. M. Peccianti, K.A. Brzdakiewicz, and G. Assanto, Opt. Lett. 27, 1460 (2002)

    Article  ADS  Google Scholar 

  9. M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, J. Nonl. Opt. Phys. Mat. 12, 525 (2003)

    Article  Google Scholar 

  10. A. Yariv, Optical Electronics in Modern Communications, Oxford University Press, New York (1997)

    Google Scholar 

  11. A. Fratalocchi and G. Assanto, Phys. Rev. E 72, 066608 (2005)

    Article  ADS  Google Scholar 

  12. F. Lederer and Y. Silberberg, Opt. Photon. News 2, 48 (2002)

    Article  ADS  Google Scholar 

  13. G. Assanto, A. Fratalocchi, and M. Peccianti, Opt. Express 15, 5428 (2007)

    Article  Google Scholar 

  14. S.K. Turitsyn, Theor. Math. Phys. 64, 226 (1986)

    MathSciNet  Google Scholar 

  15. E.W. Laedke, K.H. Spatschek, and S.K. Turitsyn, Phys. Rev. Lett. 73, 1055 (1994)

    Article  ADS  Google Scholar 

  16. S.V. Dmitiev, P.G. Kevrekidis, and N. Yoshikawa, J. Phys. A 38, 7617 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  17. A.B. Aceves, C. De Angelis, T. Peschel, R. Muschall, F. Lederer, S. Trillo, and S. Wabnitz, Phys. Rev. E 53, 1172 (1996)

    Article  ADS  Google Scholar 

  18. A. Fratalocchi, G. Assanto, K.A. Brzdakiewicz, and M.A. Karpierz, Appl. Phys. Lett. 86, 051112 (2005)

    Article  ADS  Google Scholar 

  19. W. Chen and D.L. Mills, Phys. Rev. Lett. 58, 160 (1987)

    Article  ADS  Google Scholar 

  20. Y.S. Kivshar and G.P. Agrawal, Optical Solitons: from Fibers to Photonic Crystals, Academic Press, San Diego (2003)

    Google Scholar 

  21. A.B. Aceves and S. Wabnitz, Phys. Lett. A 141, 37 (1989)

    Article  ADS  Google Scholar 

  22. C. Conti, S. Trillo, and G. Assanto, Phys. Rev. Lett. 78, 2341 (1997)

    Article  ADS  Google Scholar 

  23. A.V. Buryak, P.D. Trapani, D.V. Skryabin, and S. Trillo, Phys. Rep. 370, 63 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. C. Zener, Proc. R. Soc. A 137, 696 (1932)

    Article  ADS  Google Scholar 

  25. R. Khomeriki and S. Ruffo, Phys. Rev. Lett. 94, 113904 (2005)

    Article  ADS  Google Scholar 

  26. A. Fratalocchi and G. Assanto, Opt. Express 14, 2021 (2006)

    Article  ADS  Google Scholar 

  27. A. Fratalocchi, G. Assanto, K.A. Brzdakiewicz, and M.A. Karpierz, Opt. Lett. 31, 790 (2006)

    Article  ADS  Google Scholar 

  28. F. Simoni, Nonlinear Optical Properties of Liquid Crystals, World Scientific, Singapore (1997)

    Google Scholar 

  29. G. Assanto, A. Fratalocchi, and M. Peccianti, Opt. Express 15, 5248 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaetano Assanto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Assanto, G., Fratalocchi, A. (2010). Nonlinear Optical Waves in Liquid Crystalline Lattices. In: Denz, C., Flach, S., Kivshar, Y. (eds) Nonlinearities in Periodic Structures and Metamaterials. Springer Series in Optical Sciences, vol 150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02066-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02066-7_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02065-0

  • Online ISBN: 978-3-642-02066-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics